

October 2021

ICM Exchange /
InfoAsset Exchange /
WSPro Exchange
Version 2021.8

2

Table of Contents
Table of Contents...2

Disclaimer..3

Introduction ...4

UI and Exchange ..4

Notational Conventions..4

Running Scripts ...5

Running Scripts from the IExchange programs ...5

Running scripts from the UI ...5

The Exchange Object Model ..7

WSNumbatNetworkObject / WSNetworkObject vs WSOpenNetwork ...10

Methods..10

Dates and Times ...10

Handling objects at the master database level ... 11

Scripting paths ... 13

Handling objects within a network... 14

Getting and setting values in ‘row objects’. ... 24

Navigating between objects... 37

Method Reference...40

WSApplication ..40

WSDatabase ... 55

WSModelObjectCollection ..58

WSModelObject ...59

Network Classes: .. 72

WSNumbatNetworkObject / WSNetworkObject... 72

Common .. 72

WSNetworkObject Only ... 80

WSNumbatNetworkObject Only Version Control Methods...81

WSNumbatNetworkObject Only Other Methods ..83

WSSimObject.. 86

WSOpenNetwork ..93

WSRowObject..113

WSNode ...117

WSLink..117

WSRiskAnalysisRunObject ... 118

WSRowObjectCollection.. 118

3

WSTableInfo ... 118

WSFieldInfo.. 119

WSCommit... 120

WSCommits..121

WSStructure ...121

WSStructureRow ...122

WSValidations ...122

WSValidation ..122

WSRunScheduler..123

WSRun ...124

WSSWMMRunBuilder ...124

Appendix 1 – Pollutograph codes .. 126

Appendix 2 – ICM InfoWorks Run Parameters ...127

Appendix 3 – ICM SWMM Run Parameters ...147

Appendix 4 – WS Pro run parameters... 159

Appendix 5 –‘Add-ons’ (ICM / InfoAsset only)... 164

Appendix 6 - Open Data Import / Export Centre UI Customisation (ICM / InfoAsset only)165

Appendix 7 – Character encoding ..174

Appendix 8 – Interacting with Jet databases ...175

Appendix 9 – Short Codes ...177

ICM and InfoAsset combined database..177

WS Pro database.. 179

Disclaimer
We do not guarantee the information in this document. The presence of a class or method in
this document does not guarantee it will exist and/or work as described.

4

Introduction
This document describes the Ruby interface for InfoWorks ICM, InfoAsset Desktop and WS
Pro. It assumes a degree of familiarity with Ruby and with the terminology of object-
oriented programming e.g. ‘class’,’method’.

UI and Exchange
Scripts may be run both from

a) the user interface of InfoWorks ICM, InfoAsset Desktop and WS Pro
b) the separately licensed InfoWorks ICM Exchange, InfoAsset Exchange and WS Pro

Exchange products, which run from the command line without displaying a
graphical user interface.

Whilst there is a great degree of overlap between the functionality available when running
scripts from the user interface and that available within the Exchange products, some
functionality is only available with one or the other. The distinction between the two is
broadly speaking as follows:

1. Within the user interface, scripts are run when a GeoPlan is open displaying a
network, possibly with a guest network loaded. The scripts may manipulate the
data in the network, perform imports and exports using the Open Data Import and
Export centres, commit and revert changes, and display some simple user
interface features. The scripts may not manipulate tree objects except selection
lists, and may not open and close databases, set up and run simulations etc.

2. From the Exchange applications, users may in addition manipulate tree objects,
create databases, set up and run simulations etc., however the user interface items
available from the ICM / InfoAsset Desktop / WS Pro Exchange user interfaces will
not be available.

Important note – users must note that the flexible nature of the Ruby scripting language
means that the language is almost infinitely flexible, the embedding of the language within the
InfoWorks ICM / InfoAsset Desktop / WS Pro applications is intended primarily for the
manipulation of data via the product’s APIs, and it may not be possible to get other Ruby
libraries etc. working within InfoWorks without problems and it will not be possible to provide
support for such attempts. If you aspire to use Ruby within the Innovyze products for tasks not
centred on the products’ APIs you should consult with Innovyze to get advice as to the
feasibility of what you are intending to attempt.

Notational Conventions
Example code will be shown in a non-proportional font e.g.

puts 'Hello Word’

5

Running Scripts
Running Scripts from the IExchange programs
The Exchange applications are run by running the IExchange program from the command
line with suitable arguments. The two required arguments are the script name and the
application code.

Relative paths are permitted for the script names but if you are running a script from the
current working directory then this follows the convention (inherited from the ‘normal’ Ruby
program) of requiring the script name to be preceded by ./

The application code are:

ICM for ICM Exchange

IA for InfoAsset Exchange

WS for WS Pro Exchange

Note that the applications are separate i.e. if you have installed the Innovyze Workgroup
Client for ICM and/or InfoAsset Manager you can use the first 2 command line arguments
(if you have the appropriate licences), and if you have installed WS pro you can use the 3 rd.

e.g.

IExchange c:\temp\script.rb ICM

IExchange ./script.rb IA

IExchange \\server\dir\script.rb WS

It is possible to provide more arguments to the script with the extra arguments following
the application code e.g.

IExchange c:\temp\1.rb WS one two three four

The normal ruby mechism is used here of passing the arguments in an array of strings
called ARGV. Note that the application code IS included in that array so with the example
above the following script

puts ARGV.size

(0...ARGV.size).each do |i|

 puts "#{i} '#{ARGV[i]}'"

end

will give the following output

5

0 'WS'

1 'one'

2 'two'

3 'three'

4 'four'

Running scripts from the UI
Ruby scripts may be run from the user interface when a network of any type is open.

file://///server/dir/script.rb

6

The menu items to run them can be found on the ‘Network’ menu.

“Run Ruby script…” allows the user to select a script file, the default suffix being “.rb”.

Once scripts are run the output directed to ‘standard output’e.g. by using the command
puts (e.g. ‘puts 'hello world') is displayed. This output is not currently displayed
synchronously as the script is run, though this may change in a future release of the
software.

The last ten scripts run are saved in a list and accessed via the ‘Recent scripts’ menu item.

In all 3 UI products it is possible to configure user actions to run Ruby scripts.

The actions appear in the ‘Actions’ menu and toolbar and are configured using the ‘User
custom actions’ and ‘Shared custom actions’ menu items on the ‘Master database settings’
menu item of the ‘File’ menu. see the product’s help for further details.

In ICM and InfoAsset Manager it is also possible to configure a list of ‘add ons’ that can be
run via an extra menu – see Appendix 5.

7

The Exchange Object Model
The classes provided are as follows:

WSApplication

The WSApplication class represents the top-level of the application. It consists purely of
class methods. These methods fall into three categories:

a) Ones that get and set settings global to the application
b) Ones that create and open databases represented by the WSDatabase class
c) Running simulations – these methods allow access to advanced features of

running simulations via the simulation agent.

WSDatabase

The WSDatabase class represents master and transportable databases.

WSModelObjectCollection

The WSModelObjectCollection class represents collections of objects of class
WSModelObject and the classes derived from it, WSNumbatNetworkObject (ICM and
InfoAsset), WSNetworkObject (WS Pro) and WSSimObject.

WSModelObject

The WSModelObject class represents individual tree objects e.g. selection lists, stored
queries, ICM runs etc.

When one of the methods of WSDatabase / WSModelObject returns a model object, the
actual class of the object returned will be determined at run time and an object of the
appropriate type will be returned e.g. WSNumbatNetworkObject for network types,
WSSimObject for simulations.

WSNetworkObject (WS Pro only)

The WSNetworkObject class is derived from the WSModelObject class. It represents the
lock version-controlled objects in WS Pro.

WSNumbatNetworkObject

The WSNumbatNetworkObject class is derived from the WSModelObject class. It
represents networks in ICM and InfoAsset, specifically both types of asset network and the
modelling network. It also represents the merge version-controlled objects in WS Pro.

WSSimObject

The WSSimObject class is derived from the WSModelObject class. It represents an
InfoWorks ICM simulation object. In ICM, it can also represent the Risk Analysis Results and
Risk Analysis Sim objects.

WSRiskAnalysisRunObject (ICM Only)

The WSRiskAnalysisRunObject class is derived from the WSModelObject class. It
represents an InfoWorks ICM risk analysis run object.

8

WSRunScheduler (WS Pro only)

WS Pro Exchange works slightly differently from ICM in its mechanism for setting up runs,
making use of a specific class to do so rather than having a method of WSModelObject.

WSRun (WS Pro only)

In WS Pro the runs are of class WSRun, derived from WSModelObject. They have one
additional method, ‘run’.

WSOpenNetwork

The WSOpenNetwork class also represents networks. The distinction between the two
classes is described below.

WSRowObjectCollection

The WSRowObjectCollection class represents a collection of objects which is designed to
be iterated through. Obtaining a WSRowObjectCollection and iterating through it is more
efficient than obtaining a vector of WSRowObject objects.

WSRowObject

The WSRowObject class represents individual objects in the network e.g. a node, a CCTV
survey etc.

When one of the methods of WSOpenNetwork, WSRowObjectCollection, WSRowObject
etc. returns an object in the network, the actual class of the object will be determined at
run time and an object of the appropriate type will be returned e.g. WSNode for a node,
WSLink for a link or WSRowObject otherwise.

WSNode

The WSNode class is derived from the WSRowObject class. It represents individual nodes
in the network.

WSLink

The WSLink class is derived from the WSRowObject class. It represents individual links in
the nework.

WSStructure

The WSStructure class represents the data stored in a ‘structure blob’ field in a
WSRowObject (or derived class). It is largely a collection class, containing a collection of
WSStructureRow objects, each of which represents a single row in the ‘structure blob’.

WSStructureRow

The WSStructureRow class represents a row in a ‘structure blob’ field in a WSRowObject
(or derived class).

WSTableInfo

The WSTableInfo class represents information about the table i.e. about the table itself
rather than individual objects contained in that table in a particular network.

9

WSFieldInfo

The WSFieldInfo class represents information about a field i.e. about the field for the table
rather than the field for an individual object contained in that table.

WSSWMMRunBuilder

SWMM runs works slightly differently from InfoWorks runs in ICM. The mechanism for
setting up runs makes use of a specific class to do so rather than having a method of
WSModelObject. It is also slightly different in detail from the WSRunScheduler for WS Pro
runs.

WSCommits

The WSCommits class is a collection class represents the information about the collection
of commits for a network. This applies to all version-controlled objects in ICM and
InfoAsset and merge version-controlled objects in WS Pro.

WSCommit

The WSCommit class represents the information about one of the commits for a network.

This applies to all version-controlled objects in ICM and InfoAsset and merge version-
controlled objects in WS Pro.

WSValidations (ICM / WS Pro only)

The WSValidations represents the results generated by the validation of a network. It is
essentially a collection class, containing a collection of WSValidation objects, each of
which represents a single validation message which would appear in a separate row if the
validation were performed within the user interface of the software.

WSValidation (ICM / WS Pro only)

The WSValidation class represents the information about one of the individual validation
messages found when performing the validation.

WSRunScheduler (WS Pro only)

This class is used for setting up runs in WS Pro Exchange. The mechanism used is different
from that followed in ICM Exchange.

WSRun (WS Pro only)

This class is used to do the actually running of runs in WS Pro Exchange.

10

WSNumbatNetworkObject /
WSNetworkObject vs WSOpenNetwork

Networks (model and asset) are represented by three object types:
WSNumbatNetworkObject, WSNetworkObject and WSOpenNetwork. These may be
thought of as corresponding to the difference between a file on a disk, which has attributes
such as its name, size etc., and an open file handle which can be read from and/or written
to. Alternatively, it may be viewed as the difference between a closed network viewed in
the explorer tree and a network which is opened. Most operations looking at or altering the
network data must be performed on a WSOpenNetwork, although there is some overlap
as some methods that affect the network data, particularly those used in InfoAsset
Exchange, are also available as methods of the WSNumbatNetworkObject class.

The process of getting a WSOpenNetwork from a WSNumbatNetworkObject /
WSNetworkObject may be thought of as being akin to opening a network from the tree in
the software by dragging it to the background, or right-clicking on it and thenselecting the
‘Open’ menu item.

Methods
Unless noted, methods return nil.

In the examples below example paths are given, these will of course be different in real-
life cases.

Dates and Times
The DateTime class provided by the Ruby core library is used to represent dates and
times. Accordingly, if you use any methods getting, setting or otherwise returning dates
you will need to include the date header using

require 'date'

The default to_s implementation for the DateTime class can be overridden to provide a
more normal date and time format e.g. as follows

class DateTime

 def to_s

 return strftime('%d/%m/%Y %H:%M:%S')

 end

end

Ruby’s behaviour means that you can add this method in your code and have this method
called as you would hope.

11

You will typically want to create DateTimes using the new method which is of the form

DateTime.new(year,month,day,hours,minute,seconds) e.g.

myDate=DateTime.new(2012,7,23,12,34,56.789)

As ICM Exchange does not have a Ruby data time class specifically to represent the use of
times in ICM simulations, in which both relative times and absolute times are used, the
following convention is used:

Absolute times are represented as a DateTime object, relative times as a negative double – a
time in seconds.

This does not apply to WS Pro, which does not have relative times.

Handling objects at the master database
level
By ‘at the master database level’ we mean at the level of handling objects that appear in
the database tree rather than within an individual network.

By and large this functionality is only available in ICM Exchange, InfoAsset Exchange and
WS Pro Exchange.

The classes that are of most relevance here are WSDatabase, WSModelObjectCollection
and WSModelObject.

Objects in the tree are typically represented two ways – by type of object (e.g. is is a Run,
an Asset Group, a Selection List etc.) and ID, a number which appears in the property sheet
when ‘properties’ is selected for an object in the tree, or by a scripting path. The scripting
path can be thought of as being roughly analogous to the path of a file e.g. ‘C:\program
files (x86)\innovyze\innovyzewc.exe. They are described in more detail below.

If I have the scripting path for an object, either obtained using a Ruby method, or worked
out ‘by hand’, you can get access to the object and then call whatever methods you desire
on it.

For example (in InfoWorks ICM, though the principle is applicable to the other products) if I
know the scripting path of a simulation is

>MODG~Basic Initial Loss Runs>MODG~Initial Loss Type>RUN~Abs>SIM~M2-

60

and I wish to export a full binary results file, I can simply write the following script:

db=WSApplication.open

 mo=db.model_object '>MODG~Basic Initial Loss Runs>MODG~Initial Loss

Type>RUN~Abs>SIM~M2-60'

mo.results_binary_export nil,nil,'d:\\temp\\sim.dat'

12

When developing scripts, or when running an ad-hoc script, a ‘quick and dirty’ way of
identifying an object can often be by using its type and ID.

For example, if I want to export a rainfall event to a CSV file, I can simply look up its ID in
the tree in the user interface and write the following script:

db=WSApplication.open

mo=db.model_object_from_type_and_id 'Rainfall Event',18

mo.export 'd:\\temp\\myfile.csv','csv'

Clearly this can be done in the user interface, but simple scripts like this can form the
building blocks for more complex scripts in which you process the files in Ruby, or use
Ruby to call other programs via COM interfaces or similar.

As well as obtaining objects by path and type and ID it is also possible to obtain them by
type and name using the find_child_model_object method of a group, or
find_root_model_object of a database.

It is possible to find all the objects in the root of the database using the root_model_objects
method of the database e.g.

db=WSApplication.open

db.root_model_objects.each do |o|

 puts o.path

end

Similarly, it is possible to find all the objects which are children of a given object using the
children method of the parent object.

This code, therefore, finds all the objects which are children of objects in the root of the
database.

db=WSApplication.open

db.root_model_objects.each do |o|

 o.children.each do |c|

 puts c.path

 end

end

These methods can be used recursively to find all the objects in the database. The
technique used in the example below is a ‘breadth first search’ i.e. we start by finding the
objects in the root of the database and putting them in an array. Thereafter we take the first
object in the array, find its children, add them onto the end of the array and remove the first
object.

db=WSApplication.open

toProcess=Array.new

13

db.root_model_objects.each do |o|

 toProcess << o

end

while toProcess.size>0

 working=toProcess.delete_at(0)

 puts working.path

 working.children.each do |c|

 toProcess << c

 end

end

Note use of delete_at(0) which returns the first item in the array whilst at the same time
removing it from the array – the old second item becomes the first etc.

In both the examples above the snippets of code output the paths of the found objects but
in real life you will want to do something else with each object found.

Where WSModelObject objects are specified in parameters of other methods, they can be
passed as

• A ruby object
• The object’s ID (if the parameter can only be of one object type)
• The path of the object

Scripting paths
The purpose of a scripting path is to uniquely identify an object in a database by giving its
name and type, the name and type of the group in which it is contained if any, the group in
which that group is contained if any and so on. This is very like the way the path of a file
gives the name of the file, the name of the directory in which it is contained, the name of
the directory in which that directory is contained and so on.

Since, however, it is possible to have objects of the same name of different types in the
same group (e.g. you can have a stored query and a selection list both called ‘My Nodes’ in
the same group), the names need to be made non-ambiguous by adding the object types
to them.

The paths always begin with >, then each object in the tree is formed by taking the object
type’s ‘short code’ (as given in the table below), following this with a ~ then adding the
name so, for example, a rainfall event ‘Winter 5 20’ in a model group ‘West’ in a master
group ‘General’ has the path:

>MASG~General>MODG~North>RAIN~Winter 5 20

If the name of any object in the scripting path for an object contains the characters ~ or >,
then those characters are ‘escaped’ with a backslash. The backslash character is also
escaped with another backslash. e.g. a master group with the unlikely name

My Master >>>~~~\\ Group

Will have the path

>MASG~My Master \>\>\>\~\~\~\\\\ Group

See appendix 9 for the short codes

14

Handling objects within a network

By ‘within a network’ we refer to the navigating between, adding, deleting and altering
objects within a network, e.g. adding a node, changing the ground level of a node etc.

The most relevant classes here are WSOpenNetwork, WSRowObject collection and
WSRowObject and the classes derived from it.

Before operating on individual objects within a network it is necessary to object a
WSOpenNetwork object. The mechanism for doing this is different between use of the
Ruby scripting functionality within the software's user interface and via the Exchange
products:

Within the user interface, obtain the WSOpenNetwork object for the current network by
using the current method of the WSApplication class i.e.

on=WSApplication.current_network

From the Exchange products you should obtain the WSOpenNetwork by use of the open
method of the WSNetworkObject or WSNumbatNetworkObject class i.e.

db=WSApplication.open

net=db.model_object_from_type_and_id 'Model Network',2

on=net.open

Having obtained the WSOpenNetwork object it is possible to obtain
WSRowObjectCollection and WSRowObject (both individually and in arrays) from it.

To do this it is generally necessary to know the table name or category.

The table names used are the internal table names. These are not generally used in the
software's user interface but can be seen in the exported CSV files. They are typically of
the form prefix_name or prefix_parts_of_name (i.e. lower-case strings, beginning with a
prefix and with words separated by underscores). The prefixes are as follows:

model networks (ICM Exchange) – hw

collection networks (InfoAsset Exchange) – cams

distribution networks (InfoAsset Exchange) – wams

WS Pro model networks (WS Pro Exchange) – wn

WS Pro controls (WS Pro Exchange) – wn_ctl

e.g. hw_node, cams_manhole, wams_manhole, wn_node, wn_ctl_node

Categories are used to obtain the objects in more than one table; the most common use of
a category is to obtain all of the nodes or links in a network regardless of the types of the
individual nodes or links

15

The categories are as follows:

'_nodes' – all nodes

'_links' – all links

'_subcatchments' – all subcatchments (model networks only)

'_other' – other objects

The lists of tables for the types of network are as follows:

Model Network Tables

2D boundary hw_2d_boundary_line

2D point source hw_2d_point_source

2D zone hw_2d_zone

2D zone defaults hw_2d_zone_defaults

Bank line hw_bank_survey

Base linear structure (2D) hw_2d_linear_structure

Bridge hw_bridge

Bridge inlet hw_bridge_inlet

Bridge opening hw_bridge_opening

Bridge outlet hw_bridge_outlet

Channel hw_channel

Channel defaults hw_channel_defaults

Channel shape hw_channel_shape

Conduit hw_conduit

Conduit defaults hw_conduit_defaults

Cross section line hw_cross_section_survey

Culvert inlet hw_culvert_inlet

Culvert outlet hw_culvert_outlet

Flap valve hw_flap_valve

Flow efficiency hw_flow_efficiency

Flume hw_flume

16

General line hw_general_line

General point hw_general_point

Ground infiltration hw_ground_infiltration

Head discharge hw_head_discharge

Headloss curve hw_headloss

IC zone - hydraulics (2D) hw_2d_ic_polygon

IC zone - infiltration (2D) hw_2d_inf_ic_polygon

IC zone - water quality (2D) hw_2d_wq_ic_polygon

Infiltration surface (2D) hw_2d_infil_surface

Infiltration zone (2D) hw_2d_infiltration_zone

Inline bank hw_inline_bank

Irregular weir hw_irregular_weir

Land use hw_land_use

Large catchment parameters hw_large_catchment_parameters

Mesh zone hw_mesh_zone

Network results line (2D) hw_2d_results_line

Network results point (1D) hw_1d_results_point

Network results point (2D) hw_2d_results_point

Network results polygon (2D) hw_2d_results_polygon

Node hw_node

Node defaults hw_manhole_defaults

Orifice hw_orifice

Polygon hw_polygon

Porous polygon hw_porous_polygon

Porous wall hw_porous_wall

Pump hw_pump

RTC data hw_rtc

RTK hydrograph hw_unit_hydrograph

River defaults hw_river_reach_defaults

17

River reach hw_river_reach

Roughness zone hw_roughness_zone

Runoff surface hw_runoff_surface

Screen hw_screen

Shape hw_shape

Sim parameters hw_sim_parameters

Siphon hw_siphon

Sluice hw_sluice

Sluice linear structure (2D) hw_2d_sluice

Snow pack hw_snow_pack

Snow parameters hw_snow_parameters

Storage area hw_storage_area

Subcatchment hw_subcatchment

Subcatchment defaults hw_subcatchment_defaults

User control hw_user_control

Water quality parameters hw_wq_params

Weir hw_weir

Collection Network Tables

Approval level cams_approval_level

Blockage incident cams_incident_blockage

CCTV survey cams_cctv_survey

Channel cams_channel

Collapse incident cams_incident_collapse

Connection node cams_connection_node

Connection pipe cams_connection_pipe

Connection pipe name group cams_name_group_connection_pipe

Cross section survey cams_cross_section_survey

Customer complaint cams_incident_complaint

18

Data logger cams_data_logger

Defence area cams_defence_area

Defence structure cams_defence_structure

Drain test cams_drain_test

Dye test cams_dye_test

FOG inspection cams_fog_inspection

Flooding incident cams_incident_flooding

Flume cams_flume

GPS survey cams_gps_survey

General asset cams_general_asset

General incident cams_incident_general

General line cams_general_line

General maintenance cams_general_maintenance

General survey cams_general_survey

General survey line cams_general_survey_line

Generator cams_generator

Manhole repair cams_manhole_repair

Manhole survey cams_manhole_survey

Material cams_material

Monitoring survey cams_mon_survey

Node cams_manhole

Node name group cams_name_group_node

Odor incident cams_incident_odor

Order cams_order

Orifice cams_orifice

Outlet cams_outlet

Pipe cams_pipe

Pipe clean cams_pipe_clean

Pipe name group cams_name_group_pipe

19

Pipe repair cams_pipe_repair

Pollution incident cams_incident_pollution

Property cams_property

Pump cams_pump

Pump station cams_pump_station

Pump station electrical maintenance cams_pump_station_em

Pump station mechanical maintenance cams_pump_station_mm

Pump station survey cams_pump_station_survey

Resource cams_resource

Screen cams_screen

Siphon cams_siphon

Sluice cams_sluice

Smoke defect observation cams_smoke_defect

Smoke test cams_smoke_test

Storage area cams_storage

Treatment works cams_wtw

User ancillary cams_ancillary

Valve cams_valve

Vortex cams_vortex

Weir cams_weir

Zone cams_zone

Distribution Network Tables

Approval level wams_approval_level

Borehole wams_borehole

Burst incident wams_incident_burst

Customer complaint wams_incident_complaint

Data logger wams_data_logger

Fitting wams_fitting

20

GPS survey wams_gps_survey

General asset wams_general_asset

General incident wams_incident_general

General line wams_general_line

General maintenance wams_general_maintenance

General survey wams_general_survey

General survey line wams_general_survey_line

Generator wams_generator

Hydrant wams_hydrant

Hydrant maintenance wams_hydrant_maintenance

Hydrant test wams_hydrant_test

Leak detection wams_leak_detection

Manhole wams_manhole

Manhole repair wams_manhole_repair

Manhole survey wams_manhole_survey

Material wams_material

Meter wams_meter

Meter maintenance wams_meter_maintenance

Meter test wams_meter_test

Monitoring survey wams_mon_survey

Node name group wams_name_group_node

Order wams_order

Pipe wams_pipe

Pipe name group wams_name_group_pipe

Pipe repair wams_pipe_repair

Pipe sample wams_pipe_sample

Property wams_property

Pump wams_pump

Pump station wams_pump_station

21

Pump station electrical maintenance wams_pump_station_em

Pump station mechanical maintenance wams_pump_station_mm

Pump station survey wams_pump_station_survey

Resource wams_resource

Surface source wams_surface_source

Tank wams_tank

Treatment works wams_wtw

Valve wams_valve

Valve maintenance wams_valve_maintenance

Water quality incident wams_incident_wq

Zone wams_zone

WS Pro Network Tables

Customer Point wn_address_point
Customer Point Allocation wn_address_point_allocation
Polygon Category wn_category
Channel Shape wn_channel_shape
Area Group wn_componentset_area
Node Group wn_componentset_node
Link Group wn_componentset_pipe
Pump Station Group wn_componentset_pump
Reservoir Group wn_componentset_res
Demand Area wn_demand_area
DigitiseValues wn_DigitiseValues
Fixed Head wn_fixed_head
Float Valve/Inlet wn_float_valve
Hydrant wn_hydrant
Spatial Data wn_incident_report
Land Use wn_landuse
Meter wn_meter
Meter Construction wn_meter_construction
Node wn_node
Non Return Valve wn_non_return_valve
Open Channel wn_open_channel
Pipe wn_pipe
Pipe Material wn_pipe_material

22

Polygons wn_polygon
Node Polygons wn_polygon_node
PRD Curve wn_prd_curve
Pruned Link wn_prunes
Pump Station wn_pst
Pump wn_pump
Reservoir wn_reservoir
Transfer Node wn_transfer_node
Valve wn_valve
Valve Curve wn_valve_curve
Well wn_well

e.g. to obtain all the nodes as a WSRowObjectCollection object

roc=on.row_object_collection('_nodes')

To obtain them as an array of WSRowObject objects

ro_vec=on.row_objects('_nodes')

In both cases the resultant WSRowObjectCollection or array can be iterated through e.g.
this example, which finds the smallest x coordinate of all the manholes in the network.

net=WSApplication.current_network

minx=nil

net.row_object_collection('cams_manhole').each do |ro|

 if minx.nil? || ro.x < minx

 minx=ro.x

 end

end

puts minx

or the more or less identical

net=WSApplication.current_network

minx=nil

net.row_objects('cams_manhole').each do |ro|

 if minx.nil? || ro.x < minx

 minx=ro.x

 end

end

puts minx

In this instance, the fact that one method returns a Ruby array of WSRowObjects and the
other returns a WSRowObjectCollection object is disguised by the

23

WSRowObjectCollection object following the normal Ruby convention for enumerable
objects.

To obtain an individual WSRowObject from a WSOpenNetwork if you know its name use
the row_object method e.g.

ro=on.row_object('cams_manhole','MH359457')

This uses the ID of an object, so for links in model networks use the upstream node ID
followed by a dot followed by the links suffix e.g. the following example which clears the
selection, and selects one link:

net=WSApplication.current_network

net.clear_selection

ro=net.row_object('hw_conduit','44633101.1')

ro.selected=true

This example uses the links category describe above:

net=WSApplication.current_network

net.clear_selection

net.row_objects('_links').each do |ro|

 ro.selected=true

end

Because names are unique within the node, link and subcatchment categories, you can
also use the category to find individual objects, thus the example which selects one link
above can be rewritten as:

net=WSApplication.current_network

net.clear_selection

ro=net.row_object('_links','44633101.1')

ro.selected=true

Nodes and links are always automatically returned as objects of classes WSNode and
WSLink respectively, with the parent class WSRowObject. These are largely identical to
the WSRowObject class but have a few extra methods for use when navigating between
objects (see below).

24

Getting and setting values in ‘row objects’.
A fundamental part of the purpose of the Ruby scripting within the products is to get and
set values of fields for the objects within the networks.

There are two fundamentally different sorts of values that can be got or set and two
fundamentally different ways of doing this.

The two sorts of values are:

1. Values of object fields stored in the network. These are the values with which users
of the software will be familiar; they are the values that are displayed in the grids
and property sheets, imported via the Open Data Import Centre, exported via the
Open Data Export Centre etc.
The names of the object fields are fixed for each type of object.

2. Tags. These are temporary values added to the objects for the duration of the
running of the script. They are typically used for storing ‘working’ values which will
later be aggregated or stored into the object fields which will persist after the
running of the script– they can, of course, also be written to files using Ruby’s file
access mechanisms.
The names of tags are not fixed but must begin with _ and can only contain digits
and the letters A-Z and a-z (without accents) and the _ character.

The two ways of accessing values are:

1. By using the [] and []= notation e.g. ro['field']=value, value=ro['field'] (for object fields)
and ro['_tag_name']=value, value=ro['_tag_name'] (for tags)

2. By using the field name or tag name as though it were the name of a method e.g.
ro.field=value, value=ro.field (for object fields) and ro._tag_name = value,
value=ro._tag_name (for tags).

The key differences in behaviour between object fields and values, beyond that of the
object field values having a life beyond the duration of the running of the script, are

1. Object field values must be explicitly written back to the local database for the
network using the write method – since tags are not stored anywhere other than in
working memory, the write method does not need to be called for them.

2. Object field values can only be stored within an active ‘transaction’ (see below).
3. Object field values are stored in the ‘InfoWorks / InfoAsset’ world. Any given field

has a particular data type and, for string fields, a length. Any attempt to store
values incompatible with the object’s data type will fail. Tags, on the other hand,
exist in the Ruby world and may therefore contain anything that can be stored in a
Ruby variable. There is no requirement for all the values for different objects of the
same tag to be of the same data type.

4. Object field values may be cached in the database, allowing more objects and
more data to be manipulated within a network than with tags, which always exist in
memory. Using too many tags and storing too much data in them may cause the
program’s memory limit to be exceeded.

Flags are treated as being separate fields.

25

Fields can, in general, be set to nil which is the equivalent of causing them to be blank in
the user interface or setting them to NULL in SQL. NULL in SQL and nil in Ruby are
essentially the same.

Arrays e.g. of coordinates are returned as a Ruby array.

This example finds and selects pipes with width less than 200 or length less than 60 or, of
course, both.

net=WSApplication.current_network

net.clear_selection

ro=net.row_objects('cams_pipe').each do |ro|

 if (!ro.width.nil? && ro.width<200) || (!ro.length.nil? &&

ro.length<60)

 ro.selected=true

 end

end

This demonstrates a key difference between Ruby and SQL; in SQL it is safe to say

width<200, the expression will ignore values which are NULL. In Ruby however, it is
necessary to explicitly check for nil values, nil being the Ruby counterpart to NULL.

If you fail to do this check a runtime error will be raised.

An equivalent way of writing the same script would be to use the [] notation as follows:

net=WSApplication.current_network

net.clear_selection

ro=net.row_objects('cams_pipe').each do |ro|

 if (!ro['width'].nil? && ro['width']<200) ||

(!ro['length'].nil? && ro['length']<60)

 ro.selected=true

 end

end

In the rare cases where the field name begins with a digit or the _ character it is necessary
to use the ro[‘fieldname’] form to access the value.

To set values it is necessary to

a) Set them within a transaction. Transactions are treated as a single unit for purposes
of undo / redo. When run from the user interface, each transaction is treated as a
single undo / redo step and appears in the menu as 'Scripted transaction'.

b) Call the write method on the row object to explicitly put the values into the
database. This is the equivalent in the user interface of finishing to edit an object, of
which you might have changed a number of values.

26

This example sets a couple of users fields for CCTV surveys based on simple calculations
performed on other fields:

net=WSApplication.current_network

net.clear_selection

net.transaction_begin

ro=net.row_objects('cams_cctv_survey').each do |ro|

 ro.user_number_1 = ro.surveyed_length / ro.total_length

 ro.user_number_2 = ro.total_length / ro.pipe_length

 ro.write

end

net.transaction_commit

The equivalent way of writing the script using the [] notation is as follows:

net=WSApplication.current_network

net.clear_selection

net.transaction_begin

ro=net.row_objects('cams_cctv_survey').each do |ro|

 ro['user_number_1'] = ro['surveyed_length'] /

ro['total_length']

 ro['user_number_2'] = ro['total_length'] / ro['pipe_length']

 ro.write

end

net.transaction_commit

The use of the form which looks as though it is a method e.g. ro.user_number_1 is
potentially clearer to those writing and maintaining scripts, but the [] form can be more
flexible since the parameter of the [] method is a Ruby string and therefore can be an
expression. The following demonstrates this by storing the two values used on the right-
hand side of the above expressions as string parameters, and building up the user field
name as a string expression:

net=WSApplication.current_network

net.clear_selection

net.transaction_begin

expressions=[['surveyed_length','total_length'],['total_length','pip

e_length']]

ro=net.row_objects('cams_cctv_survey').each do |ro|

 (0...expressions.size).each do |i|

ro['user_number_'+(i+1).to_s] = ro[expressions[i][0]] /

ro[expressions[i][1]]

 ro.write

 end

end

net.transaction_commit

27

Once the user has run a script such as the above, the changes will have been made to the
local network as though the change had been made manually in the user interface, or via
SQL or similar, the changes have NOT been committed to the master database. It IS
possible to commit the network to the master database by adding a call to the commit
method with a suitable comment as a parameter e.g.

net.commit 'set user fields'

Two users of tags, one simple and one more complex, are demonstrated below in the
'navigating between objects' section.

Various data fields in InfoWorks and InfoAsset are represented as ‘structure blobs’ - the
field contains a number of ‘rows’ of values for each object which in some respects behave
as though they are a sub-table – they have a number of named fields with values.

The structure blobs that are most common are the following:

hyperlinks

attachments

material_details

resource_details

Many tables contain a hyperlinks field. The following tables in asset networks contain one
or more of the other three fields named above:

Collection Network

Table
has

attachments
field

has
material_details

field

has
resource_details

field

Blockage incident Y Y Y

CCTV survey Y Y Y

Channel Y N N

Collapse incident Y Y Y

Connection node Y N N

Connection pipe Y N N

Cross section survey Y Y Y

Customer complaint Y Y Y

Data logger Y N N

Defence area Y N N

28

Defence structure Y N N

Drain test Y Y Y

Dye test Y Y Y

FOG inspection Y Y Y

Flooding incident Y Y Y

Flume Y N N

GPS survey Y Y Y

General asset Y N N

General incident Y Y Y

General line Y N N

General maintenance Y Y Y

General survey Y Y Y

General survey line Y Y Y

Generator Y N N

Manhole repair Y Y Y

Manhole survey Y Y Y

Monitoring survey Y Y Y

Node Y N N

Odor incident Y Y Y

Orifice Y N N

Outlet Y N N

Pipe Y N N

Pipe clean Y Y Y

Pipe repair Y Y Y

Pollution incident Y Y Y

Property Y N N

Pump Y N N

Pump station Y N N

29

Pump station electrical
maintenance

Y Y Y

Pump station mechanical
maintenance

Y Y Y

Pump station survey Y Y Y

Screen Y N N

Siphon Y N N

Sluice Y N N

Smoke defect observation Y N N

Smoke test Y Y Y

Storage area Y N N

Treatment works Y N N

User ancillary Y N N

Valve Y N N

Vortex Y N N

Weir Y N N

Zone Y N N

Distribution Network

Table
has

attachments
field

has
material_details

field

has
resource_details

field

Borehole Y N N

Burst incident Y Y Y

Customer complaint Y Y Y

Data logger Y N N

Fitting Y N N

GPS survey Y Y Y

General asset Y N N

30

General incident Y Y Y

General line Y N N

General maintenance Y Y Y

General survey Y Y Y

General survey line Y Y Y

Generator Y N N

Hydrant Y N N

Hydrant maintenance Y Y Y

Hydrant test Y Y Y

Leak detection Y Y Y

Manhole Y N N

Manhole repair Y Y Y

Manhole survey Y Y Y

Meter Y N N

Meter maintenance Y Y Y

Meter test Y Y Y

Monitoring survey Y Y Y

Pipe Y N N

Pipe repair Y Y Y

Pipe sample Y Y Y

Property Y N N

Pump Y N N

Pump station Y N N

Pump station electrical
maintenance

Y Y Y

Pump station mechanical
maintenance

Y Y Y

Pump station survey Y Y Y

Surface source Y N N

31

Tank Y N N

Treatment works Y N N

Valve Y N N

Valve maintenance Y Y Y

Valve shut off Y N N

Water quality incident Y Y Y

Zone Y N N

In addition to these four fields, the following fields containing structure blobs occur in the
tables as follows:

Model Network

Bank line

Bank line Bank data bank_array

Base linear structure (2D)

Base linear structure (2D) Section data sections

Bridge

Bridge Bridge deck data bridge_deck

Bridge DS bridge section data ds_bridge_section

Bridge DS link section data ds_link_section

Bridge US bridge section data us_bridge_section

Bridge US link section data us_link_section

Bridge linear structure (2D)

Bridge linear structure (2D) Section data sections

Bridge opening

Bridge opening Piers piers

Channel shape

Channel shape Channel profile profile

Cross section line

32

Cross section line Section data section_array

Flow efficiency

Flow efficiency Flow efficiency table FE_table

Head discharge

Head discharge
Head discharge power
table HDP_table

Inline bank

Inline bank Section data bank

Irregular weir

Irregular weir Chainage elevation chainage_elevation

Node

Node Storage array storage_array

River reach

River reach Left river bank left_bank

River reach Right river bank right_bank

River reach River sections sections

River reach Section spacing section_spacing

Shape

Shape Geometry geometry

Subcatchment

Subcatchment ReFH descriptors refh_descriptors

33

Collection Network

CCTV survey

CCTV survey Details details

Cross section survey

Cross section survey Section data section_data

General survey line

General survey line Points point_array

Manhole survey

Manhole survey Details details

Manhole survey Incoming pipes pipes_in

Manhole survey Outgoing pipes pipes_out

Order

Order Order details order_details

Pipe clean

Pipe clean Pipes pipes

Pump station

Pump station Available telemetry available_telemetry

Pump station Levels levels

Pump station Pump groups pump_groups

Pump station mechanical
maintenance

Pump station mechanical
maintenance Pumps pumps

Pump station survey

Pump station survey Drop tests drop_tests

Storage area

Storage area Level Data level_data

34

Distribution Network

General survey line

General survey line Points point_array

Hydrant test

Hydrant test Flow hydrants flow_hydrants

Order

Order Order details order_details

Pump station

Pump station Available telemetry available_telemetry

Pump station Levels levels

Pump station Pump groups pump_groups

Pump station mechanical
maintenance

Pump station mechanical
maintenance Pumps pumps

Pump station survey

Pump station survey Drop tests drop_tests

Valve shut off

Valve shut off Points point_array

Valve shut off Valves valve_details

WS Pro Network

Node
Node Demand By Category demand_by_category
Node Land Use Areas landuse_areas

Reservoir
Reservoir Demand By Category demand_by_category

Reservoir Depth Volume depth_volume
Reservoir Land Use Areas landuse_areas
Hydrant
Hydrant Demand By Category demand_by_category
Hydrant Land Use Areas landuse_areas
Pump

35

Pump Triplets triplets

Pump Station
Pump Station Pumps pumps

Valve Curve
Valve Curve Loss Coefficients curve
PRD Curve
PRD Curve Curve Values curve
Link Group
Link Group Link ID pipe_links

Pump Station Group
Pump Station
Group Link ID pump_links
Node Group
Node Group Node ID nodes

Reservoir Group
Reservoir Group Node ID res_nodes

Area Group
Area Group Boundary links boundary_links
Area Group Node ID area_nodes

A simple example which loops through all the CCTV details to build up a list of videos used
is as follows:

net=WSApplication.current_network

videos=Hash.new

ro=net.row_objects('cams_cctv_survey').each do |ro|

 ro.details.each do |d|

 video=d.video_no

 if !video.nil?

 if !videos.has_key?(video)

 videos[video]=0

 end

 end

 end

end

videos.keys.sort.each do |k|

36

 puts k

end

ro.details may be written as ro['details'] as with all other fields. ro.details in this case is an
object of type WSStructure. Each row of the structure is accessed as an object of type
WSStructureRow, a class which has only two methods, [] and []=.

An alternative way of writing the code is to get the rows by index rather than use the 'each'
method:

net=WSApplication.current_network

net.transaction_begin

net.row_objects('cams_cctv_survey').each do |ro|

 ro_details=ro.details

 (0...ro_details.size).each do |i|

 detail_row=ro_details[i]

 if detail_row.code=='OJS'

 detail_row.code='SJO'

 end

 end

 ro_details.write

 ro.write

end

net.transaction_commit

This version makes it more explicit that ro.details and the individual rows are Ruby objects.

When setting values in structure blobs it is necessary to call the write method on the
WSStructure to save the data back to the WSRowObject, the write method must then be
called on the WSRowObject to save it back to the local database e.g.

net=WSApplication.current_network

net.transaction_begin

net.row_objects('cams_cctv_survey').each do |ro|

 ro.details.each do |d|

 if d.code=='OJS'

 d.code='SJO'

 end

 end

 ro.details.write

 ro.write

end

net.transaction_commit

This example changes the OJS code to SJO in all defects in all CCTV surveys.

37

Navigating between objects
The term ‘navigate’ is used here for the process of finding objects that are either physically
connected to a given object (e.g. the upstream node, the downstream links) or
conceptually linked (e.g. the surveys for an asset, the assets for a survey).

There are two methods for navigating between objects.

Specific to nodes and links.

Node and links are presented to the user as instances of classes WSNode and WSLink
respectively. The nodes have the methods us_links and ds_links and the links have
methods us_node and us_link.

This code clears the selection, then selects a node, then iteratively selects its upstream
links, then their upstream nodes, then their upstream links etc.

net=WSApplication.current_network

net.clear_selection

ro=net.row_object('cams_manhole','MH354671')

ro.selected=true

ro._seen=true

unprocessedLinks=Array.new

ro.us_links.each do |l|

 if !l._seen

 unprocessedLinks << l

 l._seen=true

 end

end

while unprocessedLinks.size>0

 working=unprocessedLinks.shift

 working.selected=true

 workingUSNode=working.us_node

 if !workingUSNode.nil? && !workingUSNode._seen

 workingUSNode.selected=true

 workingUSNode.us_links.each do |l|

 if !l._seen

 unprocessedLinks << l

 l.selected=true

 l._seen=true

 end

 end

 end

end

As well as demonstrating use of the us_links method of WSNode and the us_node method
of WSLink, this demonstrate some other useful techniques:

1 – as with the example above listing the WSModelObject objects in a database, this
demonstrates the use of a breadth first search – we add the upstream links of the node to
an array, then work through the array from the front, taking the links from it, selecting them,

38

then if they have an upstream node, getting the upstream links of that node and adding
them to the back of the array. In this case we are using the shift method of the Ruby array,
which returns the first item in the array, removing it from the array.

2-unlike the navigation of the database, where the objects are in a simple tree structure,
networks can contain loops, therefore you will typically need to make sure that you only
process any given node or link once, otherwise your script may well keep revisiting the
same objects over and over again. We do this by use of a tag which we have named
'_seen'. Whenever we process a node or link we set the value of the _seen tag to true, and
we ensure that we don't process nodes or links if they have got the tag set to true,
signifying that they have already been processed.

General
The more general way of navigating between objects is to use the navigate and navigate1
methods of the WSRowObject. The difference between the 2 methods is that navigate1
may only be used for one to one links and returns a WSRowObject or nil, whereas navigate
may also be used for one-to-many links and returns an array, possibly containing zero
elements.

The code above may be rewritten using these methods as follows:

net=WSApplication.current_network

net.clear_selection

ro=net.row_object('cams_manhole','MH354671')

ro.selected=true

ro._seen=true

unprocessedLinks=Array.new

ro.navigate('us_links').each do |l|

 if !l._seen

 unprocessedLinks << l

 l._seen=true

 end

end

while unprocessedLinks.size>0

 working=unprocessedLinks.shift

 working.selected=true

 workingUSNode=working.navigate1('us_node')

 if !workingUSNode.nil? && !workingUSNode._seen

 workingUSNode.selected=true

 workingUSNode.navigate('us_links').each do |l|

 if !l._seen

 unprocessedLinks << l

 l.selected=true

 l._seen=true

 end

 end

 end

end

39

As you can see, the only changes here are that calls to us_links are replaced by calls to
nagivate('us_links') and the call to us_link is replaced by a call to navigate1('us_link').

The navigate method however is much more versatile – this example navigates from CCTV
surveys to pipes

net=WSApplication.current_network

interesting_codes=['ABC','DEF','GHI','JKL','MNO']

net.transaction_begin

net.row_objects('cams_pipe').each do |ro|

 (0...interesting_codes.size).each do |i|

 ro['user_number_'+(i+1).to_s]=nil

 end

 ro.write

end

codes=Hash.new

net.row_objects('cams_cctv_survey').each do |ro|

 ro.details.each do |d|

 code=d.code

 code_index=interesting_codes.index(code)

 if !code_index.nil?

 pipe=ro.navigate1('pipe')

 if pipe

 if pipe._defects.nil?

 pipe._defects=Array.new(interesting_codes.size,0)

 end

 pipe._defects[code_index]+=1

 end

 end

 end

end

net.row_objects('cams_pipe').each do |ro|

 if !ro._defects.nil?

 (0...interesting_codes.size).each do |i|

 ro['user_number_'+(i+1).to_s]=ro._defects[i]

 end

 ro.write

 end

end

net.transaction_commit

Essentially, it clears user numbers 1 to 5 for all pipes, then iterates through all defects,
counting the number of defects of 5 particular codes for each pipe, then stores those in
user numbers 1 to 5.

Note the use of arrays stored in tags for temporary storage of counts.

40

Method Reference
WSApplication
add_ons_folder (ICM / InfoAsset Desktop UI only)
s=WSApplication.add_ons_folder

Returns the full path of the 'add ons' folder described in Appendix 5 e.g.
C:\Users\badgerb\AppData\Roaming\Innovyze\WorkgroupClient\scripts

Note that the folder will not exist unless manually created. Its parent folder will almost
certainly exist.

background_network (ICM / InfoAsset Desktop UI only)
bn=WSApplication.background_network

Returns the background network for the GeoPlan that currently has focus. Scripts may only
work on current and background networks in the UI mode. The background network may,
of course, be nil if no background network is loaded.

cancel_job (ICM Exchange only)
WSApplication.cancel_job(job)

Cancels a job being run by the agent. The parameter is a job ID from the array returned by
launch_sims – see below.

choose_selection (UI only)
sel=WSApplication.choose_selection(‘prompt text’)

Displays a dialog allowing the choice of a selection list object in the current master
database, returns a WSModelObject representing that selection list if the user chooses one
and hits OK, returns nil otherwise.

colour (UI only)
col=WSApplication.colour(r,g,b)

This method exists for convenience in the context of the graph method described below.
Given 3 parameters, r, g and b from 0 to 255 returns a colour with those red, green and
blue values e.g. colour(0,0,0) returns black, colour(255,0,0) returns red, colour(255,255,255)
returns white.

connect_local_agent (ICM Exchange only)
bSuccess=WSApplication.connect_local_agent(wait_time)

Connects to the local agent, returning true if it succeeds. The call waits for a number of
milliseconds specified in the parameter.

This method must be called before the launch_sims method is called.

current_database (UI only)
db=WSApplication.current_database

Returns the current database. Only very limited database functionality is available from
Ruby scripting from within the UI. This method is used to return the database object for the
currently open master database.

41

current_network (UI only)
on=WSApplication.current_network

Returns the network for the GeoPlan that currently has focus. Scripts may only work on the
current network (and background networks) in the UI mode.

If a Ruby script is run in the UI when the current network has results then the results will be
available to the script.

create (Exchange only)
WSApplication.create(path)

e.g.

WSApplication.create 'd:\\temp\\1.icmm'

Creates a standalone database at the location given by the path parameter.

Likely exceptions for this method to throw are the following RuntimeExceptions:

Error 43 : Can't overwrite an existing database

z:\test.icmm contains an incorrect path

create_transportable (Exchange only)
WSApplication.create_transportable(path)

Creates a transportable database at the location given by the path parameter.

file_dialog (UI only)
file_or_files=WSApplication.file_dialog(open, extension, description,
default_name,allow_multiple_files,hard_wire_cancel)

Displays a file dialog (open or save), and if OK is selected returns the file path, or if
allow_multiple_files was set to true, an array of selected files.

The parameters are as follows:

open – true if the dialog is to be an ‘open’ dialog (i.e. to select an existing file to be read
subsequently in the Ruby script), false if it is to be a ‘save’ dialog (i.e. to select the name of a
file to be written subsequently in the Ruby script)

extension – the extension of the file e.g. ‘csv’, ‘dat’, ‘xml’.

Description – a description of the type of file to save which will appear in the file dialog e.g.
‘Comma Separated Value file’.

Default name – a default name to save the file (if open is false), or a default name to search
for (if open is true).

Allow multiple files – true if open is false and you wish to allow more than one file to be
selected. The parameter is ignored if open is true.

The method returns the path of the file chosen as a string, unless open is true and
allow_multiple_files is true, in which case an array of strings is returned.

42

Hard-wire cancel – if this parameter is true or nil, if the user cancels from the dialog, the
execution of the Ruby script is stopped.

folder_dialog (UI only)
folder=WSApplication.folder_dialog(title,hard_wire_cancel)

Displays a dialog allowing the selection of a folder, returned as a string.

The parameters are as follows:

Title – a title for the dialog

Hard-wire cancel – if the parameter is true or nil, if the user cancels from the dialog, the
execution of the Ruby script is stopped.

If the user selects OK, the path of the folder is returned as a string. If the user selects
cancel and the hard_wire_cancel parameter is set to false, nil will be returned.

graph (ICM / InfoAsset Desktop UI only)
WSApplication.graph(params)

Displays a graph according to the parameters passed in.

The graph method contains 1 parameter, a hash.

It has the following keys, which are all strings:

WindowTitle – a string containing the title of the graph window

GraphTitle – a string containing the title of the graph (i.e. this appears IN the window rather
than being the title)

XAxisLabel – a string containing the label of the X-axis

YAxisLabel – a string containing the label of the Y-axis

IsTime – a value which evaluates as true or false, which should be set to true if the x axis is
made up of time values and is labelled as dates / times.

Traces – an array of traces defined as follows:

Each trace in the array of traces is in turn also a hash.

The trace hash has the following keys, which are all strings:

Title – a string giving the trace’s name

TraceColour – an integer containing an RGB value of the trace’s colour. A convenient way
of getting this is to use the WSApplicatioon.colour method

SymbolColour - – an integer containing an RGB value of the colour used for the symbol
used at the points along the trace. A convenient way of getting this is to use the
WSApplicatioon.colour method

Marker – a string containing the symbol to be used for the points along the trace – possible
values are:

43

None, Cross, XCross, Star, Circle, Triangle, Diamond, Square, FCircle, FTriangle, FDiamond,
FSquare

The F in the above names means ‘filled’.

LineType – a string containing the style to be used for the trace’s line – possible values are:

None, Solid, Dash, Dot, DashDot, DashDotDot

XArray – an array containing the values used in the trace for the x coordinates of the points.
They must be floating point values (or values that can be converted to a floating point
values) if IsTime is false or time values if IsTime is true.

YArray - – an array containing the values used in the trace for the x coordinates of the
points. They must be floating point values (or values that can be converted to a floating
point values).

There must be an equal number of values in the XArray and YArray in each trace, though
they can vary between traces.

input_box(UI only)
s=WSApplication.input_box(prompt,title,default)

Displays a box allowing the input of a text value. The prompt appears on the dialog, the
title appears as the dialog title, unless it is nil or the empty string in which case a default
title appears. The text field is initially set to the ‘default’ parameter. If the user hits OK, the
value in the text field is returned, otherwise the empty string is returned.

launch_sims (ICM Exchange only)
arr=WSApplication.launch_sims(sims, server, results_on_server, max_threads, after)

Launches one or more simulations in a flexible way. This method requires
connect_local_agent to have been called prior to its being called.

The parameters are as follows:

Sims – an array of WSModelObject objects for the simulations

Server – the name of the server to run the simulation on, or ‘.’ for the local machine
or ‘*’ for any computer.

Results_on_server – Boolean

Max_threads – the maximum number of threads to use for this simulation (or 0 to
allow the simulation agent to choose)

After – the time (as a time_t time) after which the simulation should run, or 0 for
‘now’.

The method returns an array of ‘job IDs’, one for each simulation in the sims array, the ID of
a given simulation will be nil if the simulation failed to launch. The job IDs are strings
intended for use as parameters to the wait_for_jobs method and the cancel_job method.
Any nil values in the array will be safely ignored by the wait_for_jobs method so the results
array may be passed into it.

44

map_component
s=WSApplication.map_component

Gets the map component used by IExchange

map_component= (UI only)
WSApplication.map_component=component_name

Sets the map component used by IExchange – valid values are MapXTreme, ArcObjects,
ArcEngine.

message_box (UI only)
text=WSApplication.message_box(text,options,icon,hard_wire_cancel)

Displays a message box.

The parameters are as follows:

Text – the text displayed

Options – must be nil or one of the following strings: ‘OK’, ’OKCancel’, ’YesNo’,
’YesNoCancel’. If the parameter is nil, then the OK and Cancel buttons are displayed.

Icon – must be nil or one of the following strings: ‘!’, ‘?’, ‘Information’. If the parameter is nil
then the ‘!’ icon is used.

Hard Wire Cancel – if this is set to true or nil then hitting the cancel button (if there is one)
will result in the Ruby script processing stopping as though the ‘cancel’ button had been
hit.

The method returns ‘Yes’,’No’,’OK’ or ‘Cancel’ as a string, unless cancel is hit and the ‘hard
wire cancel’ parameter is set to true or nil in which case execution of the script is stopped.

The icons appear as follows:

‘!’ (and nil)

‘?’

45

‘Information’

‘Stop’

The buttons appear as follows:

‘OK’

46

‘OKCancel’ (and nil)

‘YesNo’

‘YesNoCancel’

open_text_view (UI only)
WSApplication.open_text_view(title,filename,delete_on_exit)

This method opens a text file in a text view within the application. The parameters are a
window title, the filename and a Boolean, which if set to true, will cause the file to be
deleted when the view is closed.

It is important to realise that this method does not cause the script to wait until the file is
closed – it opens the view and then continues to the next item in the script.

The purpose of the delete_on_exit parameter is allow the user to create a temporary file
which will be displayed by this method and then deleted when the view is closed by the
user.

47

prompt (UI only)
arr=WSApplication.prompt(title,layout,hard_wire_cancel)

This method displays a prompt grid, similar to that used in the SQL in the software. It
displays values and allows users to edit them.

Title – the title of the displayed dialog.

Layout – an array of arrays as described below.

Hard-wire cancel – if this is set to true or nil, if the user hits cancel, the running of the Ruby
script is interrupted.

The method returns an array of values, one for each line in the dialog.

The layout parameter must be an array consisting of one array for each line to be
displayed.

The array for each line must contain between 2 and 9 values as follows:

Index 0 – a string to display as a description of the value for the row

Index 1 – a type of the value – one of the following strings:

NUMBER – a number

STRING- a string

 DATE – a date (as a Ruby DateTime object)

BOOLEAN – a Boolean value, appearing in the edit column as a check-box

READONLY – a read only value, appearing in the edit column as a string with a
grey background. The value is converted to a string except for Ruby types float
and double.

Index 2 (optional, except for rows of read only type) – a default value i.e. the initial value
when the dialog appears. For read only rows, this is the value displayed which cannot, of
course, be changed

Index 3 (optional) a number of decimal places – used for numbers and read only values of
Ruby types float and double.

Index 4 (optional) a subtype – one of the following strings

RANGE – valid for NUMBER only, the value will be chosen from a combo box with
values specified in array elements index 5 and 6 inclusive.

LIST – valid for NUMBER, STRING and DATE only. The value will be chosen from a
combo box of values supplied as an array in array element 5.

MONTH – valid for NUMBER only, the value will be chosen from a combobox
containing the names of the months.

FILE – valid for STRING only, the value will be chosen by pressing a button and
selecting one or more filenames via a file dialog, the precise details of which will
be determined by array elements with indices 5, 6, 7 and 8 as follows:

48

Index 5 – Boolean – true for an ‘open’ dialog, false for a ‘save’ dialog

Index 6 – String – the file extension

Index 7 – String – a description of the file type

Index 8 – Boolean – true to allow the selection of multiple files if index 5 is
set to true giving an ‘open’ dialog, ignored otherwise

FOLDER – valid for STRING only, the value will be chosen by pressing a button and
selecting a folder. Array element 6 must be a folder description as a string or nil, in
which case a default title will be used.

Here is an example of a prompt exercising most of these options:

require 'Date'

val=WSApplication.prompt "Badger",

[

['This is a number','NUMBER'],

['This is a string','String'],

['This is a date','Date'],

['This is a date with

default','Date',DateTime.new(2012,7,13,12,45,00)],

['This is a number With 4 DP','Number',234.123456,4],

['This is a month','Number',11,nil,'MONTH'],

['This is a range','Number',13,2,'RANGE',100,200],

['String with default','String','Badger'],

['List','String','Default',nil,'LIST',['Alpha','Beta','Gamma']],

['List of numbers, no default','Number',nil,nil,'LIST',[3,5,7,11]],

['List of numbers, with

default','Number',23,nil,'LIST',[13,17,19,23]],

['List of dates, no

default','Date',nil,nil,'LIST',[DateTime.new(2012,7,13,12,45,00),Dat

eTime.new(2012,7,17,13,15,00),DateTime.new(2012,7,10,17,15,00)]],

['List of dates, with

default','Date',DateTime.new(2011,10,13,14,12,30),nil,'LIST',[DateTi

me.new(2012,7,13,12,45,00),DateTime.new(2012,7,17,13,15,00),DateTime

.new(2012,7,10,17,15,00)]],

['This is a bool','Boolean'],

['This is a false bool','Boolean',false],

['This is a true bool','Boolean',true],

['File save','String','Badger.dat',nil,'FILE',false,'dat','Data

file',false],

['File load single','String',nil,nil,'FILE',true,'dat','MySystem

data file',false],

['File load multiple','String',nil,nil,'FILE',true,'dat','More than

one MySystem data file',true],

['This is a folder','String',nil,nil,'FOLDER','Name of MyFolder'],

['Read Only String','Readonly','Turbo Pump'],

['Read Only Number','Readonly',12.3456678],

['Read only number 6 dp','ReadOnly',87.65456789,6]

49

],false

puts val.to_s

When run, it looks like this:

As you can see, there are a number of lists (with the button for the pull down to the right),
and a number of filenames (with a button showing ellipses to press to invoke the file or
folder dialog).

The read only values are showed greyed out, in this example the rows are ordered so they
appear at the bottom of the grid.

Notice that the date time values in the lists and for defaults are set using DateTime.new as
described earlier in this document.

If OK is hit without changing any values, it returns an array like this:

[nil, nil, nil, #<DateTime: 2012-07-13T12:45:00+00:00

(78595905/32,0,2299161)>, 234.123456, 11.0, 100.0, "Badger",

"Default", nil, 23.0, nil, #<DateTime: 2011-10-13T14:12:30+00:00

(1414568501/576,0,2299161)>, false, false, true, "Badger.dat", nil,

nil, nil, "Turbo Pump", 12.3456678, 87.65456789]

scalars (UI only)
WSApplication.scalars(title,layout,hard_wire_cancel)

This method displays a grid of values, similar to that used in the SQL

The parameters are as follows:

Title – the title of the displayed dialog.

50

Layout – an array of arrays as described below.

Hard-wire cancel – if this is set to true or nil, if the user hits cancel, the running of the Ruby
script is interrupted.

The layout parameter must be an array consisting of one array for each line to be
displayed.

The array for each line must contain 2 or 3 values as follows:

Index 0 – a string to display as the description of the value for the row

Index 1 – the value to be displayed as a Ruby value. If the value is a float or a double it will
be displayed by using the Ruby to_f method, otherwise the to_s method will be used.

Index 2 (optional) – a number of decimal places to be used between 0 and 8 inclusive, this
will be used for float and double values and ignored for any others.

wait_for_jobs (ICM Exchange only)
id_or_nil=WSApplication.wait_for_jobs(array_of_job_ids,wait_for_all,timeout)

Waits for one or all of the jobs in the array to complete, or for the timeout time to be
reached.

The parameters are as follows:

Array_of_job_ids – an array of job IDs, i.e. values in the array returned by launch_sims. This
array may contain nil values which are safely ignored.

Wait_for_all – true to wait until all the jobs in the array complete, false to wait for one.

Timeout – a timeout time in milliseconds.

Returns Qnil if waittime is exceeded, otherwise returns the array index of the job that
caused the wait to end (if waitall is true, this is the last job to complete)

wds_query_databases
hash=WSApplication.wds_query_databases(server,port)

Returns a hash with 3 values: response, databases and allowDatabaseCreation

‘response’ is the repsonse from the server as a string

‘databases’ is an array of hashes, with one member per database, see below.

‘allowDatabaseCreation’ is a Boolean

The hash for each database has 3 keys:

‘databaseName’ – the database name as a string

‘version’ – the database version as a string

‘versionIsCurrent’ – a Booolean.

51

working_folder (Exchange only)
s=WSApplication.working_folder

e.g.

puts WSApplication.working_folder

Returns the current working folder as a string

NB – if you have not specified a working folder, either in a script or in the UI, the default
working folder which is used will be returned i.e. this returns the working folder that is
actually being used regardless of whether you have explicitly set it or not

results_folder (Exchange only)
s=WSApplication.results_folder

e.g.

puts WSApplication.results_folder

Returns the current results folder as a string

NB – if you have not specified a results folder, either in a script or in the UI, the default
results folder which is used will be returned i.e. this returns the results folder that is actually
being used regardless of whether you have explicitly set it or not

open (Exchange only)
iwdb=WSApplication.open(path,bUpdate)

iwdb=WSApplication.open(path)
iwdb=WSApplication.open

e.g.

db=WSApplication.open 'd:\\temp\\1.icmm',true

db.open ‘d:\\temp\\1.icmm’

db.open

Opens the database with path ‘path’ and returns an object of type WSDatabase. If the
database requires updating and the flag bUpdate evaluates to true then the database will
be updated (if possible) otherwise the call will fail

If the path is blank or the method is called with no parameters then uses the current
master database, if any. If bUpdate is omitted it is treated as false.

Likely exceptions for this method to throw are:

Error 13 : File Not Found : d:\temp\misc.icmm (error=2: "The system

cannot find the file specified.")

if the database is not present.

Error 13 : File Not Found : z:\misc.icmm (error=3: "The system

cannot find the path specified.")

if the database path is invalid

no database path specified

if the path is nil and there is no currently selected master database via the UI

52

major update failed

minor update failed

if there is a problem with a database update

database requires major update but allow update flag is not set

database requires minor update but allow update flag is not set

if the database requires an update but the second parameter is false

override_user_unit (Exchange only – see note in method text)
OK=WSApplication.override_user_unit(code,value)

e.g.

OK=WSApplication.override_user_unit 'X','ft'

Overrides a current user unit for the duration of the script

This can be useful where ICM Exchange is running as a service, where the "user" has no
settings of it own and you don't want the default user units that are selected for the locale

Returns true if successful, false for an unknown unit or value.

Note – when scripts are run from the UI, the user units will always be the ones set up in the
UI (or the default).

override_user_units (Exchange only)
errs=WSApplication.override_user_units(filename)

e.g.

errs=WSApplication.override_user_units 'd:\\temp\\uu.csv'

if errs.length>0

 puts “error reading CSV file”

end

Bulk overrides the current user units for the duration of the script.

Takes a filename of a file containing comma separated pairs of unit code, unit value pairs,
one pair per line. E.g.

XY,US Survey ft

Useful where ICM Exchange is running as a service, where the "user" has no settings of it
own.

Returns an error string – an empty string indicates success. Note, however, that any valid
units will be applied, regardless of whether there are any errors with other lines of the file.

A likely exception for this method to throw is:

Error 13 : File Not Found : z:\uu.csv (error=3: "The system cannot

find the path specified.")

if the file does not exist.

53

script_file
s=WSApplication.script_file

Returns the full path of the script file. This will either by the file specified on the command
line of the Exchange product or the file selected in the user interface.

This method is supplied primarily to obtain the script's path in order to process the path to
get the paths of files in the same directory e.g. config files for the Open Data Import and
Export Centres.

set_exit_code (Exchange only)
WSApplication.set_exit_code(exit_code)

e.g.

WSApplication.set_exit_code 12

Sets the InfoLite application’s exit code. The exit code must evaluate to a Fixnum, if it does
not, an exception will be thrown:

exit code is not a number

Note that calling this method does not cause the script to terminate, it merely sets the exit
code returned to the operating system when the script does terminate.

set_working_folder (Exchange only)
WSApplication.set_working_folder(path)

e.g.

WSApplication.set_working_folder 'd:\\temp\\wf'

Sets the working folder.

NB – this working folder will be used for the duration of this ICM Exchange run. it will not
be stored in the registry and will not be used by any other instances of ICM Exchange or
the ICM UI.

set_results_folder (Exchange only)
WSApplication.set_results_folder(path)

e.g.

WSApplication.set_results_folder 'd:\\temp\\rf'

Sets the results folder.

NB – this results folder will be used for the duration of this ICM Exchange run. it will not be
stored in the registry and will not be used by any other instances of ICM Exchange or the
ICM UI.

54

ui?
b=WSApplication.ui?

Returns true in interactive mode, false otherwise. The purpose of this method is to allow
Ruby code to be written which does different things when run from within the user
interface and when run from InfoWorks ICM / InfoAsset Exchange.

use_arcgis_desktop_licence (Exchange only – see note in method text)
WSApplication.use_arcgis_desktop_licence

When using the open data import and export centre methods with ArcGIS the software
uses an ArcGIS server licence type by default. Use this method to use an ArcGIS desktop
licence instead. It is the responsibility of the user to choose an appropriate ArcGIS licence
based on their use of the software.

Note – when scripts are run from the UI, the desktop licence is, of course, used.

use_user_units?
b=WSApplications.use_user_units

e.g.

puts WSApplication.use_user_units?

Returns a Boolean indicating whether the application is using user units (default is false for
the Exchange products and true within the user interface).

use_user_units=
WSApplication.use_user_units = flag

e.g.

WSApplication.use_user_units=true

Sets the flag indicating whether the application is using user units.

use_utf8?
b=WSApplications.use_utf8?

e.g.

puts WSApplication.use_utf8?

Returns a Boolean indicating whether the application is using UTF8 in string handling
(default is false). See appendix 6 for more details.

use_utf8=
WSApplication.use_utf8 = flag

e.g.

WSApplication.use_utf8=true

Sets the flag indicating whether the application is using UTF8 in string handling (default is
false). See appendix 6 for more details.

55

version
s=WSApplication.version

e.g.

puts WSApplication.version

Returns the InfoWorks ICM version number as a string e.g.

“2.5.0.5001”

WSDatabase
The majority of these methods are only available in the Exchange products. The primary
purpose of the methods that ARE permitted from the product UIs is to allow navigation of
the database in order to find and create selection list objects.

copy_into_root (Exchange only)
mo=iwdb.copy_into_root object,bCopySims,bCopyGroundModels

Given a model object (typically from another database) copies it into the database in the
root, returning the new model object. The bCopySims and bCopyGroundModels
parameters determine whether or not simulation results and ground models respectively
are copied, corresponding to the equivalent user interface options.

file_root (Exchange only)
s=iwdb.file_root

Returns the root used for GIS files for the database – i.e. the path within which GIS file
names will be treated as having relative paths. This will be the path shown in the UI as
‘Remote files root’ when the user selects the ‘Select remote roots…’ option.

If the database is a standalone database and the check-box is checked to force the roots
to be below the master database, then the path returned will be the one used by the
software in this situation i.e. the folder containing the master database.

find_model_object
mo=iwdb.find_model_object(type,name)

e.g.

puts iwdb.find_model_object('Model Network','MyNetwork')

Given the scripting type of an object and a name of a version controlled object (not its
scripting path), will return the model object in the database of that type with that name. The
name should not be the scripting full path, just the name of the object.

This method only works for version controlled objects and takes advantage of the fact that
version controlled objects have unique names so the name, rather than scripting full path
is enough to identify the object in the database uniquely.

56

find_root_model_object
mo=iwdb.find_root_model_object(type,name)

e.g.

mo=iwdb.find_root_model_object('Master Group','My Master Group')

Given the scripting type of an object and the name of an object, will return the model
object with that name in the root of the database. Currently the only object types found in
the root of the database are ‘Master Group’, ‘Model Group’ and ‘Asset Group’

guid
s=iwdb.guid

Returns the GUID for the database, otherwise known as the ‘database identifier’.

list_read_write_run_fields (ICM only)
arr=iwdb.list_read_write_run_fields

e.g.

iwdb.list_read_write_run_fields {|fn| puts fn}

Returns an array of strings containing all the fields in the Run object that are read-write
fields i.e. may be set from ICM Exchange scripts.

model_object
mo=iwdb.model_object(scripting_path)

e.g.

mo=iwdb.model_object('>MODG~My Root Model Group')

Given a scripting path of an object returns the model object with that path, otherwise
returns nil.

If you know the scripting path of the object in the database, this is the ‘official’ way of
finding the model object.

model_object_collection
moc=iwdb.model_object_collection(type)

Given a scripting type, returns a WSModelObjectCollection of all the objects of that type –
not just the objects of that type in the root.

model_object_from_type_and_guid (Exchange only)
mo=iwdb.model_object_from_type_and_guid(type,guid)

e.g.

mo=iwdb.model_object_from_type_and_guid 'Model Network,'{CEB7E8B9-

D383-485C-B085-19F6E3E3C8CD}'

57

Returns the model object of the given scripting type with the ‘CreationGUID’ (an internal
database field) given in the second parameter.

model_object_from_type_and_id
mo=iwdb.model_object_from_type_and_id(type,id)

e.g.

mo=iwdb.model_object_from_type_and_id('Rainfall Event',1)

Returns the model object in this database with the type and ID given, the type is from the list
of scripting types (see above), and the ID is the Id in the database which will be found by
selecting the ‘properties’ option on the object.

This can be an easy way of getting a WSModelObject from something you have found in
the InfoWorks ICM UI by selecting the object in the tree and obtaining its properties.

new_network_name (Exchange only)
name=iwdb.new_network_name(type,name,branch,add)

e.g.

newname=iwdb.new_network_name('Model Network',oldname,false,false)

The purpose of this method is to generate a name for a new network based on a given
network name, with the intention that the old name is the name of an existing network and
the new name will be used as the name of a subsequently created network.

The 3rd and 4th parameters are Boolean parameters which control the precise naming
convention used. If branch is false the names will be got by appending #1 on the end if the
name does not end in # followed by a number, if it does end in a # followed by a number
the number will be incremented. If branch is true the same applies except that _ is used as
the special character instead of #. If add is true then #1 or _1 will be appended to the name
regardless of whether or not the name ends in # or _ followed by a number.

new_model_object (Exchange only)
mo=iwdb.new_model_object(type,name)

e.g.

root_master_group=iwdb.new_model_object('Master

Group','MyRootMasterGroup')

Given a scripting type and a name, creates a new object with that name in the root of the
database. For this to work it is necessary that the type be a legal object type that can go
into the root of the database i.e. this type must be “Asset Group”,”Model Group” or “Master
Group”. More may be added in the future.

Likely exceptions thrown by this method are:

unrecognised type – if the type is not a valid scripting type name

invalid object type for the root of a database – if objects of this type cannot be placed in
the root of the database

58

an object of this type and name already exists in root of database – if an object with this
type and name exists in the root of the database

licence and/or permissions do not permit creation of a child of this type in the root of the
database – if the object cannot be created in the root of the database for licence and/or
permissions reasons e.g. an attempt to create an Asset Group when the user doe not have
an InfoAsset licence of some sort

unable to create object – if the creation fails for some other reason

path
s=iwdb.path

e.g.

puts iwdb.path

returns the pathname of the master database as a string

root_model_objects
moc=iwdb.root_model_objects

Returns a WSModelObjectCollection of all the objects in the root of the database.

use_merge_version_control? (WS Pro only)
b=iwdb.use_merge_version_control?

Returns true if the master database is using merge version control for new objects, false
otherwise (i.e. the same behaviour as the checked menu item in the UI)

use_merge_version_control=
iwdb.use_merge_version_control=b

Sets the value of the flag which determines whether new objects in the master database will
use merge version control (i.e. the same behaviour as the checked menu item in the UI)

WSModelObjectCollection
[]
mo=moc[n]

Returns the nth WSModelObject in the collection. The index is 0 based i.e. valid values are
from 0 to length-1.

count
n=moc.count

Returns the number of WSModelObjects in the collection

each
WSModelObjectCollection.each do |mo|

e.g.

moc.each { |x| puts x.name }

59

The each method can be used to iterate through all the objects in the collection.

WSModelObject
The majority of these methods are only available in the Exchange products.

[] (ICM / InfoAsset only)
[]=(ICM / InfoAsset Exchange only)
mo['field']=value

v=mo['field']

The array operator is used to get and set values from fields in the object.

This is most useful for the InfoWorks Run object in InfoWorks ICM – the parameters for the
InfoWorks run can be found in Appendix 2 (SWMM Runs and runs in WS Pro are handled
differently – see WSRunScheduler and WSSWMMRunBuilder).

The parameter is invariably a field name, the value is a Ruby value of an appropriate type
to be stored in the InfoWorks master database.

A special case is the case where the value being stored is the reference to another object
in the database. In this case the value stored may be

a) The object as a WSModelObject (or class derived from it)
b) The ID of the object
c) The scripting path of the object

bulk_delete (Exchange only)
mo.bulk_delete

This deletes the object and all its children. The deleted objects are NOT put into the
recycle bin, they are completely deleted.

children (Exchange only)
moc=mo.children

e.g.

master_group.children.each {|c| puts "child #{c.path}"}

Returns the children of the object as a WSModelObjectCollection

comment (Exchange only)
s=mo.comment

Returns the description (i.e. the text which appears in the description tab of the properties
for an object) as a string.

comment= (Exchange only)
mo.comment=s

Sets the description (as described above) for an object from a string.

60

compare (ICM / InfoAsset Exchange only)
b=mo.compare(mo2)

e.g.

if mo.compare(mo2)

 puts “networks are identical”

end

Given another model object, compare the 2 objects returning true if they are identical, false
otherwise. The objects must both be of the same type and must be version controlled
objects or simulation results. There is currently a limitation that the simulation results may
only be compared if the database from which they came is the current master database.

copy_here (Exchange only)
mo2=mo.copy_here(object,bCopySims,bCopyGroundModels)

Given a model object (typically from another database) copies it into the database as a
child of this object, returning the new model object. The bCopySims and
bCopyGroundModels parameters determine whether or not simulation results and ground
models respectively are copied, corresponding to the equivalent user interface options.

csv_import_tvd (InfoAsset Exchange only)
arr=mo.csv_import_tvd(file_path, name, config_file_path)

Performs an import of time varying data into an asset group, creating one or more ‘time
varying data’ objects in the same manner as the user interface when the import time
varying data from generic CSV option is used. The parameters are the path of the file, the
root name of the new object and the path of the config file saved from the user interface.

deletable? (Exchange only)
b=mo.deletable?

Returns true if the object can be deleted by normal means i.e. without using bulk_delete
which can, of course, delete anything. This corresponds to whether the object can be
deleted from the normal user interface and reflects the same rules e.g. does it have
children, is it used in a simulation etc.

delete (Exchange only)
mo.delete

Deletes the object, providing it can be deleted in the normal user interface i.e. without
using bulk_delete which can, of course, delete anything. This reflects, therefore, the rules
used in the user interface.

delete_results (ICM Exchange only)
mo.delete_results

Deletes the results for the object, if the object is a simulation.

export (ICM & InfoAsset Exchange only)
mo.export(path,format)

Exports the model object in the appropriate format.

61

The formats permitted depend on the object type. The format string may affect the actual
data exported as well as the format in which the data is exported e.g. for rainfall events the
parameter ‘CRD’ means that the Catchment Runoff Data is exported.

When the format is the empty string the data is exported in the InfoWorks text file format.
This format may be used for:

Inflow

Level

Infiltration

Waste Water

Trade Waste

Rainfall Event (non-synthetic)

Pipe Sediment Data

Observed Flow Event

Observed Depth Event

Observed Velocity Event

Layer List (this is a different file format but still termed the ‘InfoWorks file’ in the
user interface).

Regulator (from 6.0)

For rainfall events the following parameters cause the export of other data in a text file
format:

CRD – Catchment Runoff Data

CSD – Catchment Sediment Data

EVP – Evaporation

ISD – Initial Snow Data

TEM – Temperature Data

WND – Wind Data

For pollutant graphs the parameters listed in Appendix 1 list cause the export of the
appropriate pollutant’s data in the text file format.

If the format is ‘CSV’ the file will be exported in ‘InfoWorks CSV’ format for the following
object types:

Level

Infiltration

Inflow

62

Observed Flow

Observed Depth

Observed Velocity

Rainfall Event (synthetic – main rainfall data)

Regulator

Damage Function (from version 6.5)

Waste Water (from a version 7.5 patch)

Trade Waste (from a version 7.5 patch)

(from version 6.5)

The results obtained by risk analysis runs may be exported as follows:

For Risk Analysis Results objects (known in ICM Exchange as Risk Calculation Results) the
files may be exported by using the following in the format field:

"Receptor Damages"

"Component Damages"

"Code Damages"

"Impact Zone Damages"

"Category Damages"

"Inundation Depth Results"

For Risk Analysis Sim objects (known in ICM Exchange as Damage Calculation Results) the
files may be exported by using the following in the format field:

"Receptor vs Code"

"Receptor vs Component"

"Code vs Component"

"Impact Zone vs Code"

"Impact Zone Code vs Component"

"Category Code vs Component"

For dashboards in InfoAsset Manager the format must be ‘html’, and the filename the
name of the HTML file. Note in this case that other files are exported alongside the html file
in the same folder. The names of these files are fixed for each individual dashboard object
in the database so exporting the same dashboard object multiple times to different HTML
files in the same folder will not give the intended results, you should instead export them
to different folders.

63

find_child_model_object
mo_found=mo.find_child_model_object(type,name)

Given the scripting type of an object and a name will return the child of the object with that
name and type.

id
n=mo.id

Returns the ID of the model object as a number

import_all_sw_model_objects(ICM Exchange only)
arr=mo.import_all_sw_model_objects(filepath,format,scenarioId,logFilepath)

Imports all swmm model objects that is present from a supported file.

Object types imported:
SWMM Network
Inflow
IWSW Run
IWSW Time Patterns
Selection List
Level
Rainfall Event
IWSW pollutograph
IWSW Climatology
Regulator

The format parameter may be “INP” (for SWMM5 files), “XPX”(XPSWMM/XPStorm files) or
"MXD"(for InfoSWMM files).

ScenarioId is only used when importing from a MXD file. You may leave it blank for other
formats.

The logfilepath is an optional parameter.

The object on which the method is called must be of a suitable type to contain the object
imported.

The method returns an array of created objects

e.g.

arr=model_group.import_all_sw_model_objects('d:\\temp\\1.inp','INP',

'','d:\\temp\\log.txt')

import_data (ICM Exchange only)
import_data(format,filepath)

Imports data into an existing object.

64

This is only relevant for rainfall events and pollutographs because they contain multiple
pages of data which must be imported and exported separately. You have the choice of
either

a) Creating an empty object and importing all the data items using this method
b) Importing the first data item into a new object using import_new_model_object

and importing subsequent items into the object using this method – in the case of
rainfall events the first item must be the rainfall, in the case of pollutographs is can
be any item.

Both InfoWorks CSV and InfoWorks file formats are supported. The parameter is ‘CSV’ for
CSV files or some other string for the InfoWorks files.

For rainfall events the formats are SMD, EVP, SOL, WND, TEM, CSD, ISD, CRD and RED –
for RED you can also put nil or ‘’. These are as documented in the main product
documentation.

For pollutographs the format name is the name of the pollutant field, as detailed in
Appendix 1.

The CSV files import the data into the blob based on data in the CSV file.

For rainfall events the CSV files may only be used for the time varying data i.e Rainfall,
Temperature, Wind, Evaporation, Solar Radiation and Soil Moisture Deficit.

e.g.

moRain.import_data ‘CSV’,’c:\\temp\\MyRain_EVP.csv’

moRain.import_data ‘SMD’,’c:\\temp\\MyRain.smd’

moPG.import_data ‘CSV’.’c:\\temp\\P.csv’

import_grid_ground_model (ICM & InfoAsset Exchange only)
mo.import_grid_ground_model(polygon,files,optionsHash)

Imports a gridded ground model into a model or asset group.

The first parameter must be nil or a WSRowObject (or object derived from it) from a
currently open WSOpenNetwork object with polygon geometry.

The second parameter must be an array of one or more filenames.

The third parameter must be a hash, as follows:

Key Type Default Notes

ground_model_name String Must be non-empty and
unique in group

data_type String Displayed in the UI
cell_size Float 1.0 Must be non-zero

unit_multiplier Float 0.001 Must be non-zero
xy_unit_multiplier Float 1 Must be non-zero
systematic_error Float 0

65

use_polygon Boolean false Polygon is only used if this is
true, if it is true the polygon
must be non-nil

integer_format Boolean true
e.g.

mg=db.model_object_from_type_and_id 'Model Group',2

files=Array.new

files << 'c:\\temp\\small_grid.asc'

fred=Hash.new

fred['ground_model_name']='fredi'

fred['data_type']='badger'

fred['cell_size']=5.0

fred['unit_multipler']=1.0

fred['xy_multiplier']=1.0

fred['integer_format']=false

fred['use_polygon']=false

mg.import_grid_ground_model nil,files,fred

import_infodrainage_object (ICM Exchange only)
mo=mo.import_infodrainage_object(filepath, objectType, logFile)

This method imports object/s of type objectType in a model group

The parameters are as follows:

filepath - full path for the InfoDrainage iddx file.

objectType - type of object to import. Only Inflow is currently imported.

logFile - full filepath where the import log is written. The log is in rich text format.

import_new_model_object (ICM Exchange only)
mo=mo.import_new_model_object(type,name,format,filepath)

This method Imports a new model object from a file.

Your code may have versinons of this with a fifth ‘event’ parameter. The event parameter is
optional (from version 11.5), you wil almost certainly not need it, if you use it you should set it to
0.

Permitted types are:

Inflow

Level

Infiltration

Waste Water

Trade Waste

Rainfall Event (non-synthetic)

66

Pipe Sediment Data

Observed Flow Event

Observed Depth Event

Observed Velocity Event

Layer List (this is a different file format but still termed the ‘InfoWorks file’ in the
user interface)

Regulator

Damage Function

Pollutograph

Except for pollutographs, the format parameter may be “” (for ‘InfoWorks format’ files) or
“CSV” for InfoWorks format CSV files (not available for layer lists or damage functions).

The event parameter is for compatibility with old files and should in general be set to 0

The object on which the method is called must be of a suitable type to contain the object
imported.

For pollutographs you can use CSV (the data imported will depend on the CSV file), or the
3 letter code of a pollutant type from Appendix 1. You can only import one pollutant, if you
wish to import more into the same InfoWorks object you can use the import_data method.
You can also use that method to import additional data into Rainfall Events.

e.g.

rainfall=model_group.import_new_model_object 'Rainfall Event','The

Rainfall','','d:\\temp\\1.red’

import_new_model_object_from_generic_CSV_files
arr=model_group.import_new_model_object_from_generic_CSV_files(type,name,

file_or_files,config_file)

This model imports a new model object from a file using the generic CSV importer. It
requires a config file previously set up in the UI.

The parameters are as follows:

Type -permitted types are as for the UI, i.e. :

Permitted types are:

Inflow

Level

Infiltration

Rainfall Event (non-synthetic)

Pipe Sediment Data

67

Observed Flow Event

Observed Depth Event

Observed Velocity Event

Regulator

Name. This is used as a prefix for the event name (and as with the UI ignored for multiple
rainfall events).

File or files. This can be a filename or, for rainfall events only, a number of filenames in
which case the behavior will be as for the ‘import multiple files into an event’ menu item.

Config file. The filename of the config file.

The return value is an array with 2 elements. The first element is the WSModelObject
created. The second element is either nil or the warning message that would appear in the
UI as a string.

import_new_sw_model_object (ICM Exchange only)
myobj=mo.import_new_sw_model_object(type,format,filepath,scenarioId,logFilepath)

Imports a new swmm model object from a file.

Permitted types are:

Inflow
IWSW Run
IWSW Time Patterns
Selection List
Level
Rainfall Event
IWSW pollutograph
IWSW Climatology
Regulator

The format parameter may be “INP” (for SWMM5 files), “XPX”(XPSWMM/XPStorm files) or
"MXD"(for InfoSWMM files).

ScenarioId is only used when importing from a MXD file. You may leave it blank for other
formats.

The logfilepath is an optional parameter.

The object on which the method is called must be of a suitable type to contain the object
imported.

The method returns the object importer.

e.g.

68

model_group.import_new_sw_model_object('Rainfall

Event','INP','d:\\temp\\1.inp','','d:\\temp\\log.txt')

import_tvd(ICM & InfoAsset Exchange only)
mo.import_tvd(filename,format,event)

Imports event data into an existing object.

The parameters are as follows:

Filename – file to be imported

Format – ‘CSV’ or ‘RED’

Event – integer – must be present but is ignored

If the format is ‘CSV’ this will import a CSV file in the ‘InfoWorks CSV file’ format into an
existing event, overwriting the data already there if there is any.

If the format is ‘RED’ and the type of the object is a rainfall event this will import the data in
event file format into an existing event, overwriting the data already there if there is any.

modified_by
s=mo.modified_by

Returns the name of the user who last modified the object as a string.

name
s=mo.name

Returns the name of an object as a string.

name= (Exchange only)
mo.name=s

Sets the name of an object from a string

new_model_object – limited functionality in UI, full in Exchange – see below
mo2=mo.new_model_object(type,name)

e.g.

child=mo.new_model_object(‘Model Network','MyNetwork')

Given a scripting type and a name will create a child object with that type and name. The
type must be a type that can be contained in the object.

Runs must be created using the new_run method and sims cannot be created directly –
they are created along with the runs based on the nature of the network and rainfall events
/ flow surveys used to create the run.

Risk analysis runs must be created using the new_risk_analysis_run method.

Likely exceptions to be thrown by this method are:

69

unrecognised type – if the type is not a valid scripting type

runs must be created using the new_run method – if an attempt is made to create a run

sims cannot be created directly – if an attempt is made to create a sim

invalid child type for this object – if the type in the first parameter may not be a child of this
object type

name already in use – if the name is in use (globally for a version controlled object, as a
child of this object for other types)

licence and/or permissions do not permit creation of a child of this type for this object – if
this type of object cannot be created for licensing and/or permissions reasons e.g. creation
of an Asset Group when the software is begin run without an InfoAsset licence of some
sort.

unable to create object – if the call fails for some other reason.

new_risk_analysis_run (ICM Exchange only)
raro=mo.new_risk_analysis_run(name,damage_function,runs,param)

Creates a new risk analysis run object. The parameters are as follows:

Damage_function - The parameter must be the ID of the damage function object, its
scripting path, or the WSModelObject (i.e. the damage function object returned from a
suitable call).

Runs – This parameter must be one of

1. The ID of the ‘normal’ run object
2. The scripting path of the ‘normal’ run object
3. The WSModelObject representing the run object
4. An array of items which must all be of the types described in 1 to 3 above

Param – the numerical parameter

new_run (ICM Exchange Only – WS Pro Exchange uses a different mechanism)
run=mo.new_run(name,network,commit_id,rainfalls_and_flow_surveys,scenarios,parameters)

Creates a new run. The method must be called on a model group otherwise an exception
will be thrown – ‘new_run : runs may only be created in model groups’.

The method can take arrays as parameters for both the rainfalls and flow surveys and for
the scenarios. In the same way that dropping multiple rainfall events and flow surveys into
the drop target on the schedule run dialog and selecting multiple scenarios on it yield
multiple simulations for a run, so calling this method with arrays of values and with
synthetic rainfall events which have multiple parameters (singly or in an array) will yield
multiple sims for the run.

The ‘run’ method which actually runs simulations is a method of the individual sim objects
below the run, which may easily be found by using the ‘children’ method of the
WSModelObject created using this method.

The parameters are as follows:

70

Name – the name of the new run. This must not already be in use in the model
group otherwise an exception will be thrown – ‘new_run : name already in use ’.

Network – the network used for the run. The parameter must be the ID of the
network, its scripting path, or the WSNumbatNetworkObject (i.e. the network
object returned from a suitable call).

Commit ID – the commit ID to be used for the run. This may either be the integer
commit ID or nil in which case the latest commit at time the run is created will be
used.

Rainfalls and flow surveys – this may be:

1. nil – in this case the run will be a dry weather flow run
2. a WSModelObject which is a rainfall event or a flow survey
3. the scripting path of a rainfall event or a flow survey as a string
4. the ID of a rainfall event
5. a negative number equal to -1 times the ID of a flow survey e.g. -7 means the Flow

Survey with ID 7.
6. An array. If the parameter is an array, then if the length of the array is 0 then the

event will be a dry weather flow run, otherwise all the array elements must be one
of 2 – 5 above. The array may not contain duplicates otherwise an exception will be
thrown.

Scenarios – this may be:

1. nil – in this case the run will use the base scenario of the network
2. the name of a scenario
3. an array in which each element is the name of a scenario as a string. It must not

contain scenarios that do not exist or duplicates.

Parameters – this must be a hash containing parameters (see Appendix 2).

Parameters for the run may either be set in this call.

update_to_latest (Exchange only)
mo.update_to_latest

This method may only be used on runs. The following conditions must apply:

a) The ‘Working’ field must have been set to true
b) There must be no uncommented changes for the network for the run.
c) all scenarios which were included in the list of scenarios for which the run was set

up must be present and validates.

This method has the same effect as pressing the ‘update to latest version of network’
button on the Run view in the user interface.

71

open (Exchange only)
opennet=mo.open

Returns a WSOpenNetwork object corresponding to the model object, providing the
model object is of a network type or a sim – see above for the description of the difference
between a WSModelObject and a WSOpenNetwork.

When this method is called on a sim, the network will be opened with the results of the
simulation loaded into it. An exception will be thrown if the simulation did not succeed, the
results are inaccessible or are not open.

When you open the results of a simulation:

• The network is opened as read only
• The current scenario is set to the scenario used for the simulation (for ICM

Exchange)
• The current scenario cannot be changed (for ICM Exchange)
• As with the behaviour in the UI of the software, the network with the results loaded

has a current timestep. The results start by being opened at the first timestep
(timestep 0) unless there are only maximum results in which case they are opened
as the maximum results timestep.

path
s=mo.path

e.g.

puts mo.path

Returns the scripting path of the object as a string.

parent_type
s=mo.parent_type

Returns the scripting type of the parent of the object (or ‘Master Database’ if the object is in
the root of the database).

parent_id
n=mo.parent_id

Returns the ID of the parent object (or 0 if the object is in the root of the database).

status (set / get) (WS Pro Exchange only)
l=mo.status

mo.status=7

Sets and gets a status field stored in the database for the model object – the field is a long
integer and can be used for any purpose. Unless set by this method the value is null in the
database which is treated as nil by Ruby. The value is not visible in the UI

type
s=mo.type

Returns the scripting type of the object.

72

Network Classes:
WSNumbatNetworkObject / WSNetworkObject
The WSNumbatNetworkObject class is used in ICM Exchange, InfoAsset Exchange and
WS Pro Exchange, the WSNetworkObject class is used WS Pro Exchange. There are some
methods in common which are described first (although some of the parameters are
different in some cases).

Common
csv_import
nno.csv_import(filename,options)

Updates the network from a CSV file with options similar to those available in the user
interface. In WSPro Exchange the version controlled object must be checked out. The
second parameter may either be nil or a hash containing the options. If the parameter is nil
then the default options will be used. The hash values are as follows:

Key Type Default Notes

Force Link
Rename

Boolean TRUE

Flag Genuine
Only

Boolean FALSE

Load Null
Fields

Boolean TRUE

Update With
Any Flag

Boolean TRUE
True to update all values, false to only update
fields with the 'update flag' flag

Use Asset ID Boolean FALSE

User Units
Boolean TRUE

Set to true for User Units, false for Native Units
- used for fields without an explicit unit set in a
'units' record

UK Dates
Boolean FALSE

If set to true, the import is done with the UK
date format for dates regardless of the PC's
settings

Action
String Mixed

One of Mixed,'Update And Add','Update
Only',Delete'

Header
String ID

One of ID,'ID Description','ID Description
Units','ID Units'

New Flag String Flag used for new and updated data

Update Flag
String

If the 'update with any flag' option is set to
false, only update fields with this flag value

73

csv_export
nno.csv_export(filename,options)

Exports the network to a CSV file with options similar to those available in the user
interface.

The second parameter may either be nil or a hash containing the options. If the parameter
is nil then the default options will be used. The hash values are as follows:

Key Type Default Notes

Use Display
Precision Boolean TRUE

Field
Descriptions Boolean FALSE

Field Names Boolean TRUE

Flag Fields Boolean TRUE

Multiple Files Boolean FALSE
Set to true to export to different files,
false to export to the same file

Native System
Types Boolean FALSE ICM / InfoAsset only

User Units Boolean FALSE

Object Types Boolean FALSE

Selection Only Boolean FALSE

Units Text Boolean FALSE

Triangles Boolean FALSE ICM Model Networks only

Coordinate
Arrays Format String Packed One of Packed, None or Separate

Other Arrays
Format String Packed One of Packed, None or Unpacked

e.g.

myHash=Hash.new

myHash['Multiple Files']=true

myHash['Coordinate Arrays Format']='None'

no.csv_export 'd:\\temp\\network.csv',myHash

74

odec_export_ex
nno.odec_export_ex(format, config_file, options, …)

This method exports network data using a previously set up Open Data Export Centre
configuration.

The number of parameters for this method is variable and depends on the type of data
imported (determined by the first parameter) and the number of imports set up in one call
to the method, which can be more then one.

The first parameter can be one of the table below. Depending on that value, the number of
parameters per table is as shown in the table:

Format Meaning
Parameters

per table

CSV CSV 2

TSV Tab separated text data (not to be confused with TAB files) 2

XML XML 4

MDB Access database 3

SHP Shape file 2

MIF MapInfo Interchange Format 2

TAB TAB file (MapInfo format binary file) (not WS Pro) 2

GDB GeoDatabase 6

ORACLE Oracle 7

SQLSERVER SQL Server 9

The GDB option is only available with a suitably licenced and available ESRI desktop or
server product.

The TAB option (but not the MIF option) is only available if your copy of InfoWorks ICM was
installed with the installer with the MapXTreme component.

The ORACLE and SQLSERVER options require the relevant client software to be installed.

The second parameter is the path of the CFG file, as saved from the Open Data Import
Centre user interface. It can contain the mappings for more than one table.

The third parameter must be nil or a hash containing the options, which broadly
correspond to those in the Open Data Export Centre user interface as follows:

Key Type Default Notes

75

Callback Class Ruby Class nil ICM / InfoAsset Only

Script File String nil WS Pro Only

Error File String nil

Image Folder String "" Asset Networks Only

Units Behaviour String Native Native or User

Report Mode Boolean FALSE True to export in 'report mode'

Append Boolean FALSE True to enable ‘Append to existing data’

Export Selection Boolean FALSE True to export the selected objects only

Previous Version
Integer 0

Previous version, if not zero differences
are exported

Create Primary Key Boolean FALSE ICM / InfoAsset Only

Previous Version Integer 0 ICM / InfoAsset Only

Append Boolean FALSE ICM / InfoAsset Only

WGS84 Boolean FALSE ICM / InfoAsset Only

Don’t Update
Geometry

Boolean FALSE
ICM / InfoAsset Only

Following these three parameters, there then follow a multiple of the ‘parameters per
table’ depending on data type, as show in the table above. It is possible to export data into
more than one table by supplying a multiple of that number of parameters e.g. to export
data from 3 tables into CSV files, six parameters are supplied for these bringing the total to
9 parameters. Alternatively, of course, it is possible to export the data by making three calls
to the method.

The parameters are as follows:

In all cases the first parameter is the name of the table to export. In this context the name is
as displayed in the software’s user interface in the Open Data Export Centre with any
spaces removed. E.g. Node, CCTVSurvey. This differs from the convention used elsewhere
e.g. for SQL.

For CSV, TSV, MIF, TAB and Shape files the second parameter is the path of the file to
export.

For Access databases (MDB) the parameters are as described below:

1- Table to export
2- Name of table in Access database
3- File name of Access database

For XML the parameters are as follows:

76

1- Table to export
2- ‘Feature class’ (as it is called in the UI – i.e. the name of the root element)
3- ‘Feature dataset’ (as it is called in the UI- i.e. the name used for each data element)
4- XML file name.

For GeoDatabase the parameters are as follows:

1- Table to export
2- Feature class
3- Feature dataset
4- Update – true to update, false otherwise. If true the feature class must exist.
5- ArcSDE configuration keyword – nil for Personal / File GeoDatabases, and ignored

for updates
6- Filename (for personal and file GeoDatabases, connection name for SDE)

For Oracle the parameters are as follows:

1- Table to export
2- Table name in Oracle
3- Table owner
4- Update – true to update, false otherwise. If true the table must exist.
5- User name
6- Password
7- Connection string

For SQL Server the parameters are as follows:

1- Table to export
2- Table name in SQL Server
3- Server name
4- Instance name
5- Database name
6- Update – true to update, false otherwise
7- Integrated security – true if integrated, false if not
8- User name
9- Password

odic_import_ex
nno.odic_import_ex(format, config_file, options, …)

This method imports and updates network data using a previously set up Open Data
Import Centre configuration.

Unlike the WSOpenNetwork version, it returns nil.

77

The number of parameters for this method is variable and depends on the type of data
imported (determined by the first parameter) and the number of imports set up in one call
to the method, which can be more then one.

The first parameter can be one of the table below. Depending on that value, the number of
parameters per table is as shown in the table:

Format Meaning
Parameters

per table

CSV CSV 2

TSV Tab separated text data (not to be confused with TAB files) 2

XML XML 3

MDB Access database 3

SHP Shape file 2

TAB MapInfo TAB file (ICM & InfoAsset only) 2

GDB GeoDatabase 3

ORACLE Oracle 6

SQLSERVER SQL Server SEE BELOW

The SQL Server export has 10 parameters per table for WS Pro and 8 for ICM and InfoNet

The GDB option only available with a suitably installed and licenced copy of an ESRI server
or desktop product.

The ORACLE and SQLSERVER options require the relevant client software to be installed.

The second parameter is the path of the CFG file, as saved from the Open Data Import
Centre user interface. It can contain the mappings for more than one table.

The third parameter must be nil or a hash containing the options, which broadly
correspond to those in the Open Data Import Centre user interface as follows:

Key Type Default Notes

Error File String Blank Path of error file

Callback Class Ruby Class nil
Class used for Ruby callback
methods (ICM & InfoAsset only)

Script File String blank Path of VBScript file

Set Value Flag String blank Flag used for fields set from data

78

Default Value Flag String blank
Flag used for fields set from the
default value column

Image Folder String blank
folder to import images from (asset
networks only)

Duplication Behaviour String Merge
One of 'Duplication
Behaviour','Overwrite','Merge','Ignore'

Units Behaviour String Native One of 'Native','User','Custom'

Update Based On Asset ID Boolean FALSE

Update Only Boolean FALSE

Delete Missing Objects Boolean FALSE

Allow Multiple Asset IDs Boolean FALSE

Update Links From Points Boolean FALSE

Blob Merge Boolean FALSE

Use Network Naming
Conventions

Boolean FALSE

Import Images Boolean FALSE Asset networks only

Group Type String blank Asset networks only

Group Name String blank Asset networks only

Network WSOpenObject Nil WS Pro Only (see below)

Connect Pipes To Dummy
Nodes

Boolean FALSE WS Pro Only (see below)

Dummy Node User Field String Nil WS Pro Only (see below)

Following these three parameters, there then follow a multiple of the ‘parameters per
table’ depending on data type, as show in the table above. It is possible to import data into
more than one table, or data into one table from more than one source by supplying a
multiple of that number of parameters e.g. to import data into 3 tables from CSV files, six
parameters are supplied for these bringing the total to 9 parameters. Alternatively, of
course, it is possible to import the data by making three calls to the method.

All these parameters are strings with the exception of one parameter for SQL Server, which
is the sixth out of eight parameters and is a Boolean which is described below.

The parameters are as follows:

In all cases the first parameter is the name of the table to import. In this context the name is
as displayed in the software’s user interface in the Open Data Import Centre with any

79

spaces removed. E.g. Node, CCTVSurvey. This differs from the convention used elsewhere
e.g. for SQL.

For subtables the name is the name of the table, followed by the name of the subtable
without any spaces e.g. to import the Details from the CCTV Survey, the string should be
CCTVSurveyDetails.

For CSV, TSV and Shape files the second parameter is the path of the file to import.

For Access databases the second parameter is the path of the Access database and the
third parameter is the name of the table or stored query to import. Data can be imported
on the basis of SQL queries by adding an SQL query to the database, however an SQL
expression cannot be used in this parameter.

For GeoDatabases the second parameter is the name of the feature class to import from
and the third parameter is the path of the GeoDatabase.

For Oracle the parameters are as follows:

1 – the table name to import into as described above

2 – the table name in the Oracle database

3 – the connection string e.g. '//power:/orcl'

4 – the owner of the Oracle table being imported from

5 – the oracle user name

6 – the oracle password

For SQL server the parameters are as follows for WS Pro:

1– the table name to import into as described above

2 – the table name in SQL Server

3 – A ‘where’ clause to filter the import at the database level (this is intended to
allow more efficient imports than fetching all the data and doing the filtering in
VBScript in cases where you are doing simple filtering – as such it allows field
values, constant numbers and strings, arithmetic and logical operators, null tests
and some simple string functions)

4 – An ‘order by’ clause to order the input (likely to mainly be useful for importing
blob data)

5 – the server name

6 – the SQL Server instance name

7 – the database name

8 – integrated security (Boolean – true or false, true meaning integrated security)

9 – user name (for non-integrated security, nil otherwise)

10 - password (for non-integrated security, nil otherwise)

80

For ICM and InfoAsset Manager they are

1– the table name to import into as described above

2 – the table name in SQL Server

3 – the server name

4 – the SQL Server instance name

5 – the database name

6 – integrated security (Boolean – true or false, true meaning integrated security)

7 – user name (for non-integrated security, nil otherwise)

8- password (for non-integrated security, nil otherwise)

(i.e. these products do not have the 3rd and 4th parameters that WS Pro has)

The ‘Network’ parameter may only be used in WS Pro when this method is used to import
a control. The parameter must be a WSOpenNetwork object of a network and this can only
be used in conjection with ‘Update Based on Asset ID’. The purpose of this functionality is
to allow controls to be imported and updated in tandem with the network – i.e. it provides a
way of updating the control based purely on the asset ID without requiring the data source
to know the primary key of the object being updated, which may not be readily available in
the data source being imported.

The ‘Connect Pipes To Dummy Nodes’ parameter works as follows: if a pipe goes from
12345 to 45678 say, and we have imported 12345 or 45678 as point objects that we
represent as links we will have created dummy nodes 12345X, 12345Y, 45678X and 45678Y.
Therefore if at this point we find that 12345 doesn't exist but 12345Y does, and similarly
45678 does but 45678X does then we change the value in the US node ID / DS node ID
field for this pipe to the X or Y version as appropriate (it is X for downstream and Y for
upstream since we expect them to connect to the downstream and upstream ends of the
link respectively)

The ‘Dummy Node User Field’ parameter if set to the name of a string field will set that
string field to ‘Y’ when a dummy node is added at the end of a link.

remove_local
nno.remove_local

Removes the local copy of the network, any uncommitted changes will be lost.

WSNetworkObject Only
This class is used for lock version control in WS Pro only

branched?
b=no.branched?

Returns true of the object is branched, false otherwise.

81

check_in
no.check_in

Checks in the version controlled object

check_out
new_object=no.check_out(new_name)

Checks out the version controlled object, giving the checked out version the name
newname and returns the new object.

checked_out_by
s=no.checked_out_by

Returns the user-name of the user who has the object currently checked out. An empty
string is returned if the object is not checked out.

checked_out?
b=no.checked_out?

Returns true if the object is checked out, false otherwise.

check_out_and_branch
new_object=no.check_out_and_branch(new_name)

As check_out but the checked out object is branched

undo_check_out
no.undo_check_out

For a checked out version controlled object, undoes the check-out i.e. effectively deletes
it. The method delete will, in fact, perform the same function, but undo_check_out will only
work for checked out objects so is slightly safer.

WSNumbatNetworkObject Only Version Control
Methods
This class is used for Infoworks ICM and InfoAsset, and well as for WS Pro when merge
version control is used.

The following methods are directly related to version control and are available in all 3
products.

branch
new_nno=nno.branch(commitid,newname)

Branches a version controlled object creating a new version controlled object, branches
based on the commit ID (these can be found from the commits method below or from the
user interface). The commit ID must be in the list of commits for that object.

commit
id=nno.commit(comment)

e.g.

nno.commit 'this is the commit comment for this commit'

82

or

id=nno.commit('this is the commit comment for this commit')

Commits changes to a network to the database. Returns the commit ID or returns nil if
there were not changes made since the last commit.

commits
c=nno.commits

Returns a WSCommits object containing the commits for the network i.e. the details of
what is committed at each stage in the history of the network.

e.g.

mo.commits.each do |c|

 puts

"#{c.branch_id},#{c.comment},#{c.commit_id},#{c.deleted_count},#{c.i

nserted_count},#{c.modified_count},#{c.setting_changed_count},|#{c.u

ser}|"

end

or

(0...mo.commits.length).each do |i|

 c=mo.commits[i]

 puts

"#{c.branch_id},#{c.comment},#{c.commit_id},#{c.deleted_count},#{c.i

nserted_count},#{c.modified_count},#{c.setting_changed_count},|#{c.u

ser}|"

end

commit_reserve
id=nno.commit_reserve(comment)

This is similar to commit in that it commits changes to the network to the database and
returns the commit ID if changes have been made, nil otherwise. The difference is that
commit_reserve keeps the network reserved.

current_commit_id
id=nno.current_commit_id

Returns the commit ID of the local copy of the network – this may not be the latest commit
ID i.e. the most recent commit ID on the server, which is returned by latest_commit_id (see
below).

83

latest_commit_id
id=nno.latest_commit_id

Returns the latest commit ID for the network i.e. the ID of the most recent commit on the
server. This may not be the same as the commit ID of the local copy, which is returned by
current_commit_id (see above).

open_version
on=nno.open_version(commit id)

This opens a previous commit of a version controlled object as a WSOpenNetwork.

reserve
nno.reserve

Reserves the network so no-one else can edit it and updates the local copy to the latest
version.

revert
nno.revert

Reverts any uncommitted changes in the local copy of the network.

uncommitted_changes?
b=nno.uncomitted_changes?

Returns true if there are uncomitted changes in the local copy of the network, false
otherwise.

unreserve
nno.unreserve

Cancels the reservation of the network.

update
b=nno.update

Updates the local copy of the network from the server. Returns true if there are no
conflicts, false if there are.

WSNumbatNetworkObject Only Other Methods
This class is used for Infoworks ICM and InfoAsset, and well as for WS Pro when merge
version control is used.

The following methods are not directly related to version control and are only available in
ICM Exchange and InfoAsset Exchange

csv_changes
nno.csv_changes(commit_id1, commit_id2, filename)

Outputs the differences between commit id 1 and commit id 2 to the specified filename. The
CSV file output is in the same format as generated by the “Compare network” function and
can be used to apply the changes to another network via “Import/Update from CSV files…”
functionality.

84

GIS_export
nno.GIS_export(format,params,location)

Exports the network data to GIS.

The parameters are as follows:

Format :

This parameter must be one of the following:

• SHP – Shape file
• TAB – Tab file
• MIF – MIF file
• GDB – GeoDatabase

Params:

This parameter can either be a hash, described below, or nil. If the parameter is nil then
the default values for its various options will be used.

Folder:

This parameter contains the base folder for the files to be exported, except for the GDB
format where it is the name of the GeoDatabase.

The params hash can contain a number of keys. If the hash is nil or the value is not
specified the default behaviour applies as described below.

ExportFlags – Boolean – if this is true then the flags are exported along with the data
values, if false they aren’t. The default is true.

Feature Dataset – String – for GeoDatabases, the name of the feature dataset. The default
is an empty string.

SkipEmptyTables – Boolean – if true skips empty tables (even if they are listed in the value
for the Tables key). The default is false.

Tables – Array as described below – the default is to export results for all tables.

UseArcGISCompatibility – Boolean – this is the equivalent of selecting the check-box in the
UI. The default is false i.e. the equivalent of not checking the check-box in the UI.

The tables element of the hash must be an array of strings which must be names of tables
as returned by the list_GIS_export_tables. Duplicates and unrecognised values are not
permitted.

85

list_GIS_export_tables
arr=nno.list_GIS_export_tables

This method lists the tables that will be exported to GIS as an array of strings. This method
is designed to return information useful when customising the parameters to GIS_export.

select_changes
nno.select_changes

Select all objects added or changed between the commit id specified and the current
network.

The network must have no outstanding changes for this to work (otherwise an exception
will be thrown).

Obviously, deleted objects will not be selected.

select_clear
nno.select_clear

Clears the selection in the network

select_count
n=nno.select_count

Returns the number of selected items in the network

select_sql
n=nno.select_sql(table,query)

e.g.

n=nno.select_sql('hw_node','x>0')

This method runs the SQL query with the given table being the ‘current table’ as it appears
in the SQL dialog i.e. the default table if the SQL query does not further qualify the table
name.

The names ‘_nodes’ or ‘_links’ can be used to run the SQL over all node or link tables in the
same way as can be achieved by selecting ‘All nodes’ or ‘All links’ in the dropdowns in the
SQL dialog.

The SQL query can include multiple clauses in the same was as SQL run from the user
interface, and can use any of the options that do not open results or prompt grids e.g.

nno.select_sql 'hw_node', "SELECT distinct x into file

'd:\\temp\\distinctx.dat'"

The method returns the number of objects selected in the last clause in the SQL block
selecting a non-zero number of object (or zero if there is no such clause).

86

user_field_names
nno.user_field_names(filename,arbitrarystring)

Produces a CSV file consisting of the names of all the user fields for all the object types in
the network.

The CSV file has no header and the arbitrary string is output as the first column, the second
column being the internal table name and the third column being the user field name.

WSSimObject
An object of this type represents an ICM Sim object, a WS Sim object, an ICM Risk Analysis
Results object or an ICM Risk Analysis Sim object. The Risk Analysis Results objects contain
the results for a number of return periods and summary results. The Risk Analysis Sim
objects contain only summary results.

The different return periods for the Risk Analysis Results objects correspond to the
timesteps for ‘normal’ simulations. The names of the methods reflect the usage for ‘normal’
simulations i.e. to list the return periods for a risk analysis results object you should use the
list_timesteps method.

Various methods cannot be called for the Risk Analysis Sim objects if those methods are
not relevant for sims with only summary results.

This chart shows which methods are available for which object types:

ICM
Sim

WS Pro
Sim

Risk Analysis
Results

Risk
Analysis
Sim

list_max_results_attributes * * *
list_results_attributes * *
list_results_GIS_export_tables * * * *

list_timesteps * * *
max_flood_contours_export *
max_results_binary_export * * *
max_results_csv_export *
results_binary_export * *
results_csv_export * *
results_csv_export_ex * *
results_GIS_export * * * *

results_path *
run * *
run_ex * *

status * *
success_substatus * *
 get *
timestep_count * * * *

87

list_max_results_attributes
arr=sim.list_max_results_attributes

Returns an array of arrays. The arrays returned correspond to the tabs on the binary results
export dialog e.g. ‘Node’, ‘Link’, ‘Subcatchment’ for the time varying results. Each array
contains 2 elements, the first of which is the name of the Tab, whilst the 2nd is an array of
attribute names e.g.

[['Scalar',['totfl','totout','totr','totrun','totvol']],['Node',['fl

ooddepth','floodvolume','flvol','pcvolbal','qincum','qinfnod','qnode

','qrain','vflood','vground','volbal','volume','DEPNOD']]]

This method is designed to return information useful when customising the parameters to
max_results_binary_export.and max_results_csv_export

list_results_attributes
arr=sim.list_results_attributes

Returns an array of arrays. The arrays returned correspond to the tabs on the binary results
export dialog e.g. ‘Node’, ‘Link’, ‘Subcatchment’. Each array contains 2 elements, the first of
which is the name of the Tab, whilst the 2nd is an array of attribute names e.g.

[["Node", ["flooddepth", "floodvolume", "flvol", "qinfnod", "qnode",

"qrain", "volume", "depnod"]]

 ["Link", ["ds_depth", "ds_flow", "ds_froude", "ds_vel", "HYDGRAD",

"Surcharge", "us_depth", "us_flow", "us_froude", "us_vel",

"qinflnk", "qlink", "volume", "pmpstate"]]

 ["Subcatchment", ["qfoul", "qsurf01", "qsurf02", "qsurf03",

"qtrade", "RAINFALL", "RUNOFF"]]

 ["Rain Gauge", ["raindpth", "RAINFALL"]]]

This method is designed to return information useful when customising the parameters to
results_binary_export.and results_csv_export

list_results_GIS_export_tables
arr=sim.list_results_GIS_export_tables

Returns an array of the tables that may be exported to GIS using the results_GIS_export
method. This method is designed to return information useful when customising the
parameters to results_GIS_export. The list will essentially only change when more tables
are added to InfoWorks. The current list is:

_2DElements

_links

hw_1d_results_point

hw_2d_bridge

hw_2d_linear_structure

hw_2d_results_line

hw_2d_results_point

hw_2d_results_polygon

hw_2d_sluice

hw_bridge

hw_bridge_opening

hw_node

hw_river_reach

88

hw_subcatchment

hw_tvd_connector

Note the results for 2D elements is _2DElements and that the table name used for all links,
which are combined into one GIS layer, is _links.

list_timesteps
arr=list_timesteps

For a normal simulation, this returns an array of the results timesteps for the simulation.
See the ‘Dates and Times’ section above for details on how absolute and relative times are
handled.
For a risk analysis results object, this returns an array of the return periods for the object.

max_flood_contours_export
max_flood_contours_export(format,groundModel,theme,filename)

Exports the flood contours to files (GIS or ASCII). The ASCII format is the same as produced
via the user interface.

Format: MIF, TAB, SHP or ASCII – as with the user interface GeoDatabases are not
supported.

GroundModel: this may either be the scripting path, the ID or the WSModelObject
representing a ground model (either grid or TIN). If the ID is negative then it represents a
TIN ground model i.e. -7 represents the TIN ground model with ID 7. If the ID is positive it
represents a gridded ground model.

For the ASCII export, this must be a grid ground model.

Theme: the script path, ID or WSModelObject representing theme to use for the contours.

Filename: the filename to be exported.

max_results_binary_export
max_results_binary_export(selection,attributes,file)

Exports the maximum results (and other summary results) for the simulation in a binary file
format intended for reading by program written by a user or 3rd party. The format is
documented in a separate document available from Innovyze.

The selection parameter may contain the ID or scripting path of a selection list object, or
the WSModelObject itself, or may be nil in which case results for the whole network will be
exported.

The attributes parameter may be nil, in which case all attributes are exported, or may be an
array as described in the list_max_results_attributes method above.

results_binary_export
results_binary_export(selection,attributes,file)

Exports the results for each results timestep for the simulation in a binary file format
intended for reading by program written by a user or 3rd party. The format is documented
in a separate document available from Innovyze.

89

The selection parameter may contain the ID or scripting path of a selection list object, or
the WSModelObject itself, or may be nil in which case results for the whole network will be
exported.

The attributes parameter may be nil, in which case all attributes are exported, or may be an
array as described in the list_max_results_attributes method above.

max_results_csv_export
results_csv_export(selection, attributes, folder)

Exports the results for the simulation in the CSV format corresponding to that used in the
CSV results export menu option.

The selection parameter may contain the ID or scripting path of a selection list object, or
the WSModelObject itself, or it may be nil in which case results for the whole network will
be exported.

The attributes parameter may be nil, in which case all attributes are exported, or may be an
array as described in the list_max_results_attributes method above (i.e. as
max_results_binary_export).

(Note that the parameters for this method are the same as those for results_csv_export_ex)

results_csv_export
results_csv_export(selection,folder)

Exports the results for the simulation in the CSV format corresponding to that used in the
CSV results export menu option.

The selection parameter may contain the ID or scripting path of a selection list object, or
the WSModelObject itself, or it may be nil in which case results for the whole network will
be exported.

results_csv_export_ex
This is different for ICM and WS Pro.

For ICM:

results_csv_export_ex(selection, attributes, folder)

As for results_csv_export but takes an extra attributes parameter which may be nil, in
which case all attributes are exported, or may be an array as described in the
list_results_attributes method above (i.e. as results_binary_export).

For WS Pro:

results_csv_export_ex(selection, folder, options)

As for results_csv_export but takes an extra options parameter which must be nil or ar a
hash. If a hash the only valid key is ‘Group By Time’ (default value false). If set to true then
the results are grouped by time in the same way as the UI option.

90

results_GIS_export
results_GIS_export(format,timesteps,params,folder)

Exports simulation results to GIS.
The parameters are as follows:

Format

This parameter must be one of the following:

• SHP – Shape file
• TAB – Tab file (ICM / InfoAsset only)
• MIF – MIF file
• GDB – GeoDatabase

Timesteps:

The timesteps parameter may take a number of values of different types as follows:

• nil – if the parameter is nil this is the equivalent of the ‘None’ option when selecting
timesteps in the UI i.e. it only makes sense if the appropriate option in the params
parameter hash is set so that maximum results are exported for the simulation.

• ‘All’ – if the parameter is set to the string ‘All’ then all timesteps will be exported
(this does not include the maximum results – if these are wanted then the
appropriate parameter in the params hash should be set)

• ‘Max’ – if the parameter is set to the string ‘Max’ then the maximum results will be
exported. This can also be achieved by setting the appropriate value in the params
hash (not applicable to WS which does not have max results)

• An integer (‘Fixnum’) representing a timestep with 0 representing the first timestep.
The number of timesteps may be found via the timestep_count method or by
counting the number of timesteps in the result of the list_timesteps method. The
maximum value permitted is the number of timesteps minus 1.

• An array of integers representing the timesteps as described above. The values
must all be valid and it may not contain duplicates. This can be used to flexibly
choose which timesteps to export in a similar manner to the more complex UI
options.

Params:

This parameter can either be a hash, described below, or nil. If the parameter is nil then
the default values for its various options will be used.

Folder:

This parameter contains the base folder for the files to be exported, except for the GDB
format where it is the name of the GeoDatabase.

91

The params hash can contain a number of keys. If the hash is nil or the value is not
specified the default behaviour applies as described below.

2DZoneSQL – Array as described below – the default is not to export any extra fields for 2D
elements. (doesn’t apply to WS)

AlternativeNaming – Boolean – if this is set then the subfolders / feature datasets used for
the export are given simpler but less attractive names which may be helpful if the aim is
process the files with software rather than to have a user select and open them in a GIS
package. The simple names are <model object id>_<timestep> with the timesteps
numbered from zero as with the timesteps parameter of the method and with <model
object id>_Max for the maxima. The default is to use the same naming convention as the
UI.

ExportMaxima – Boolean – if this is set to true the maximum results are exported. The
default is false i.e. to not export them. (doesn’t apply to WS)

Feature Dataset – String – for GeoDatabases, the name of the feature dataset. The default
is an empty string.

Tables – Array as described below – the default is to export results for all tables.

Threshold – Double – the depth threshold below which a 2D element is not exported. This
is the equivalent of checking the check-box in the UI and entering a value. The default is to
behave as though the check-box is unchecked i.e. all elements are exported. (doesn’t
apply to WS)

UseArcGISCompatibility – Boolean – this is the equivalent of selecting the check-box in the
UI. The default is false i.e. the equivalent of not checking the check-box in the UI. (doesn’t
apply to WS)

The tables element of the hash must be an array of strings which must be names of tables
as returned by the list_results_GIS_exports_table. Duplicates and unrecognised values are
not permitted.

The 2DZoneSQL element of the hash must be an array of arrays. Each of those arrays must
in turn contain 2 or 3 values.

The first value is the name of the field to be exported as a string.

The second value is the SQL expression as a string.

The optional 3rd value must be an integer between 0 and 9 inclusive representing the
number of decimal places. If this is not set then a default of 2 decimal places is used.

run
sim.run

This method runs a simulation, waiting until the simulation finishes, however long that may
be. There are alternative mechanisms for running simulations which permit greater control
over the process. The simulation will be run on the current machine.

92

run_ex
sim.run_ex(server,number_of_threads) [ICM only] OR

sim.run_ex(hash) [ICM only] OR
sim.run_ex(hash) [WS Pro only]

This method behaves as run above, except that you may control the server on which the
simulation is run and various other aspects.

In ICM:

You can either have two parameters, a string and an integer, or one parameter, a hash.

In the former case (a string and an integer):

The first parameter server name may be a machine name or one of ‘.’ or ‘*’. ‘.’ has the
meaning of local machine and ‘*’ has the meaning of any available server.

The second parameter may be an integer representing the number of threads. Using 0 as
the number of threads causes as many threads as possible to be used as with the user
interface option.

In the latter case (a hash):

The keys are as follows:

Server – string - server name - may be a machine name or one of ‘.’ or ‘*’. ‘.’ has the
meaning of local machine and ‘*’ has the meaning of any available server, default value ‘.’

Threads – integer - the number of threads. Using 0 as the number of threads causes as
many threads as possible to be used as with the user interface option.

SU – Boolean – if you are using InfoWorks One you must set this to true. The default value
is false.

ResultsOnServer – Boolean - true to store the results on the server, false otherwise –
default value false.

In WS Pro:

The first and only parameter must be a hash.

The keys are as follows:

RunOn – string - the name of the machine the simulation may run on, or one of ‘.’ or ‘*’. ‘.’
has the meaning of local machine and ‘*’ has the meaning of any available server. – default
value ‘*’

MaxConcurrentJobs – integer - the maximum number of concurrent jobs – default value 0.

MaxRuntimeSeconds – integer - the maximum runtime in seconds, default value 1 day.

ResultsOnServer – Boolean – true to store the results on the server, false otherwise –
default value true.

Note that the default values for ResultsOnServer and Server are different between ICM
and WS Pro.

93

status
n=sim.status

Returns the status of simulation, one of:

• “None”
• “Active”
• “Success”
• “Fail”

success_substatus
n=sim.success_substatus

If the simulation succeeded, returns its substatus, one of:

• “Incomplete”
• “Warnings”
• “OK”

timestep_count
n=sim.timestep_count

Returns the number of results timesteps for a simulation.

WSOpenNetwork
add_scenario (InfoAsset / ICM only)
on.add_scenario(name,based_on,notes)

e.g.

on.add_scenario 'My Scenario',nil,'This is my scenario'

The parameters are:

Name – name of new scenario (string)

Based_on – name of scenario (string) or nil for a scenario not based on another one

Notes – the notes for the scenario

clear_selection
on.clear_selection

Clears the selection

close (Exchange only)
on.close

Closes the WSOpenNetwork. It is not necessary to call this, but it will ensure that memory
is freed at this point rather than when Ruby garbage collection occurs. Once a
WSOpenNetwork has been closed, any objects within that network (e.g. of type
WSRowObject) become invalid and any attempt to access methods for them will cause an
exception to be thrown).

94

current_timestep (modelling products only)
n=on.current_timestep

The WSOpenNetwork object has a current timestep corresponding to the current timestep
results have when opened in the software’s UI. It determines the timestep for which the
‘result’ method of the WSRowObject returns its value. This method returns the index of the
current timestep, with the first timestep being index 0 and the final timestep begin
timestep_count – 1. The value of -1, representing the ‘maximum’ ‘timestep’ is also possible.
The initial value when a sim is opened in ICM Exchange will be 0 if there are time varying
results, otherwise -1 for the ‘maximum’ ‘timestep’.

current_timestep_time (modelling products only)
t=on.current_timestep_time

Returns the time of the current timestep.

current_timestep= (Exchange only for modelling products)
on.current_timestep=7

This method sets the current timestep to the timestep with the index given e.g. 0 sets the
current timestep to the first timestep, -1 sets it to the ‘maximum’ ‘timestep’.

csv_export
nno.csv_export(filename,options)

Exports the WSOpenNetwork to the file specified

The options object must be a nil or a hash contain some or all of the following fields

Use Display Precision If true, uses the display
precision, otherwise
outputs the number with
more digits

True

Field Descriptions If true, outputs a line of field
descriptions (for the
information of anyone
reading the file)

False

Field Names If true, outputs a header
line with the field names –
these are used when files
are reimported

True

Flag Fields If true, the flag fields are
exported

True

Multiple Files If true, the version control
object is exported to
multiple files, one for each
network object type

False

95

Native System Types If true, the internal names
for system types are used

False

User Units If true, the user selected
units rather than the
internal ones (SI) are used

True

Object Types If true, the type of each
object exported is exported
in a separate column

False

Selection Only If true, only the selected
objects are exported

False

Units Text If true, a line containing the
units for each field is
exported

False

Coordinate Arrays Format The mechanism whereby
arrays of coordinates (e.g.
polylines and polygons) are
exported. Choices are
‘None’, ‘Packed’ and
‘Unpacked’

Packed

Other Arrays Format The mechanism whereby
other arrays (e.g. shapes /
demand diagrams) are
exported. Choices are
‘None’, ‘Packed’ and
‘Separate’

Packed

csv_import
nno.csv_import(filename,options)

Updates the WSOpenNetwork from the CSV file specified.

The options parameter must be nil, or a hash which can contain any or all of the following.

Force Link Rename If nodes are renamed, then
associated objects have the
node renamed

True

Flag Genuine Only Only genuine changes to
the field are flagged

False

Load Null Fields If the field in an object to be
updated is not blank and
the field in the CSV file is
blank, then if this is set to

True

96

true, the data will be
updated otherwise it won’t

Update With Any Flag If this is set to true, then any
field can be updated, if it is
set to false then only fields
with the flag set to the
‘update flag’ will be
updated

True

Use Asset ID Use the asset ID as the key
for updates rather than the
normal ‘primary key’

False

User Units Use the current ‘user units’
rather than the native (SI)
units

True

Action Action to perform

Update Only – will only
update existing objects

Update And Add – will
update and add objects,
but not perform deletions

Mixed – will add, update
and delete objects
depending on an ‘action’
field in the CSV file

Delete – will delete objects

Mixed

Header What header the importer
will expect in the file(s)

ID – ID only

ID Description – Ids on one
line, followed by
descriptions on the next

ID Units – Ids on one line,
followed by units on the
next

ID Descriptions Units – Ids
on one line, followed by
descriptions on the next,
followed by units on the 3rd

ID

97

New Flag Flag used for new /
updated fields

Blank

Update Flag Flag used to determine
what objects are updated if
the ‘Update With Any Flag’
field is set to false

Blank

current_scenario
puts on.current_scenario

Returns the WSOpenNetwork object’s current scenario as a string.

If the current scenario is the base scenario, returns ‘Base’ (in English).

current_scenario=
on.current_scenario=new_scenario

Sets the WSOpenNetwork’s current scenario. The new value should be a string or can be
nil in which case the current scenario is set to the base scenario. The new scenario must
exist.

delete_scenario (ICM and InfoAsset Only)
on.delete_scenario(scenario_name)

e.g.

on.delete_scenario('myscenario')

Deletes the scenario specified in the string parameter. If the specified scenario is the
current scenario, the current scenario is set to be the base scenario.

delete_selection
on.delete_selection

Deletes the current selection from the network in the current scenario.

delete_superfluous_dummy_nodes (WS Pro only)
delete_superfluous_dummy_nodes(tables,field)

Given an array of table names, which must be link tables (e.g. ‘wn_pst’) and the name of a
text field, a user field being the most likely candidate for this will delete all objects in the
node table tableswhere that field is set to Y and the object is not the upstream or
downstream node in one of the tables in the array.

The aim of this method is to be used in conjunction with the open data import centre to
support the situation where dummy nodes have been added at the ends of links (e.g.
because they have been imported from a GIS where they are represented as point objects)
but the links have since been deleted.

98

download_mesh_job_log (ICM Exchange only)
on.download_mesh_job_log(job_id,path)

Given one of the jobs listed in the return value of mesh_async, copies the log file created
by that job to the path given.

each
on.each do |x|

Iterates through all the objects in the WSOpenNetwork e.g.

on.each do |x|

 puts x.id

end

each_selected
on.each_selected do |x|

As each but iterates through the selected objects only.

expand_short_links (WS Pro Exchange only)
on.expand_short_links(hash)

Expands short links in the same way as the UI.

The parameter is a hash which must exist.

The parameters correspond closely to those on the dialog in WS Pro.

The two float values will either be in user length units or system length units (m) depending
on the global setting.

The array of table names are the internal names of the link types to which it applies e.g.
wn_meter.

The ‘Recalculate length’ and ‘Use user flag’ Booleans correspond to the 3 choices on the
dialog for flagging changed lengths – if you set the first to false the value of the second is
ignored since lengths won’t be changed there is not need to flag them.

Key Type Default

Expansion threshold Float 1.0

Minimum resultant length Float 1.0

Flag String

Protect connection points Boolean false

Recalculate length Boolean false

Use user flag Boolean false

Tables
Array of
strings empty array

99

e.g.

db=WSApplication.open

net=db.model_object_from_type_and_id('Geometry',276)

on=net.open

on.run_SQL('_links','1')

myHash=Hash.new

#myHash['badger']='duck'

myHash['Expansion threshold']=1.0

myHash['Minimum resultant length']=1.0

myHash['Recalculate Length']=true

myHash['Use user flag']=true

myHash['Tables']=['wn_meter']

myHash['Flag']='SL'

on.expand_short_links(myHash)

export_IDs
on.export_IDs(filename,parameters)

Exports the IDs of all the objects or the current selection to a file, grouped by table.

The parameters must be nil or a hash. If the parameters are a hash then there are two
possible values:

Selection Only – if set to true only the IDs of the current selection will be exported (default
false i.e. all exported)

UTF8 – if set to true the file will be UTF8 encoded (default false i.e. current locals)

field_names(type)
arr=on.field_names(type)

e.g.

arr=on.field_names('hw_node')

arr.each do |f|

 puts f

end

Given the internal name of a type, returns a list of names of the fields for that object type –
the object type cannot be a class.

gauge_timestep_count (ICM Only)
n=on.gauge_timestep_count

This method returns the number of gauge timesteps. If there are no gauge timesteps,
either because no objects are ‘gauged’ or because the gauge timestep for the run was set
to 0 it returns 0.

gauge_timestep_time (ICM Only)
t=on.gauge_timestep_time(timestep_no)

This method returns the time for the gague timestep with the index given as the method’s
parameter.

100

GIS_export
on.GIS_export(format,params,location)

Exports the network data to GIS.

See the method of the same name for WSNumbatNetworkObject for an explanation of the
parameters.

InfoDrainage_import
on.InfoDrainage_import(filename, logFile)

Imports an InfoDrainage model into the network.

Parameters:

filepath - full path to the InfoDrainage iddx file.

logfile - full filepath where the import log is written. The log is in rich text format.

list_gauge_timesteps (ICM only)
arr=on.list_gauge_timesteps

This method returns an array containing the times of all the gauge timesteps for the sim in
order.

list_GIS_export_tables
arr=on.list_GIS_export_tables

This method lists the tables that will be exported to GIS as an array of strings. This method
is designed to return information useful when customising the parameters to GIS_export.

list_timesteps
arr=on.list_timesteps

This method returns an array containing the times of all the timesteps for the sim in order.

load_mesh_job (ICM Exchange only)
on.load_mesh_job(job_id)

Given one of the jobs listed in the return value of mesh_async, loads the completed mesh
into the network.

load_selection
on.load_selection(selection_list)

Selects objects based on the selection list object. The parameter may be a
WSModelObject, an object path or the numerical ID of the model object – providing in all
cases that the model object is a selection list.

mesh (ICM Exchange Only)
myHash=on.mesh(params)

This method meshes one or more 2D zones.

The parameter is a hash, containing the following keys:

GroundModel – the ground model

101

VoidsFile –GIS file containing voids

VoidsFeatureClass – for GeoDatabases, the feature class within the GeoDatabase

VoidsCategory – the voids polygon category

BreakLinesFile –GIS file containing break lines

BreakLinesFeatureClass - for GeoDatabases, the feature class within the GeoDatabase

BreakLinesCategory – the break lines polyline category

WallsFile –GIS file containing walls

WallsFeatureClass - for GeoDatabases, the feature class within the GeoDatabase

WallsCategory – the walls polyline category

2DZones - one or more 2D zones

2DZonesSelectionList – a selection list of 2D zones

LowerElementGroundLevels –whether or not the process will lower 2D mesh elements
with ground levels higher than the adjacent bank levels.

RunOn – the computer to run the jobs on

LogFile – the path of the log file

LogPath – the path of a folder for the log files

The values associated with the keys are as follows:

GroundModel
This may either be the scripting path, the ID or the WSModelObject representing a ground
model (either grid or TIN). If the ID is negative then it represents a TIN ground model i.e. -7
represents the TIN ground model with ID 7. If the ID is positive it represents a gridded
ground model.
This parameter is required.

VoidsFile
The path of a GIS file containing the voids - String – ignored if empty

VoidsCategory
The category of polygon within the network used for voids – string (ignored if empty)

VoidsFeatureClass
For a GeoDatabase, the feature class within the GeoDatabase for the voids

BreakLinesFile
The path of a GIS file containing the break lines- String – ignored if empty

BreakLinesCategory
The category of polyline within the network used for break lines – string (ignored if empty)

BreakLinesFeatureClass
For a GeoDatabase, the feature class within the GeoDatabase for the break lines

102

WallsFile
The path of a GIS file containing the walls - String – ignored if empty

WallsCategory
The category of polyline within the network used for walls– string (ignored if empty)

WallsFeatureClass
For a GeoDatabase, the feature class within the GeoDatabase for the walls

2DZones
If the 2DZonesSelectionList parameter is absent and this parameter is absent or nil all 2D
zones will be meshed. Otherwise can contain
b) the name of a 2D zone as a string
c) an array of strings containing the names of 2D zones

2DZonesSelectionList
A selection list of 2D zones to mesh – must be a selection list as a numerical ID, a scripting
path or a WSModelObject.

LowereElementGroundLevel
If present and evaluates to true, the process will lower 2D mesh elements with ground
levels higher than the adjacent bank levels

RunOn
The computer to run the job on – ‘.’ for ‘this computer’, ‘*’ for any computer

LogFile
The path of the log file (an HTML file) is blank one will not be produced (well, actually one
is produced anyway, but it won’t be copied to this path). This can only be used if only one
2D zone is meshed.

LogPath
The path of a folder for the log files. This may be used however many 2D zones are
meshed. The file will be given the name of the 2D zone with the file type HTML.

For the pairs of keys (voids, break lines and wall) only one of the two values may be set.

If any of the VoidsFile, WallsFile or BreakLinesFile values are set, i.e. if any voids, walls or
break lines are to be read in from a GIS files, the GIS component must be set with
WSApplication.map_component= The user must have the GIS component they are
selecting.

The FeatureClass keys can only be set if the corresponding File key is set and the map
control is set and is not MapXTreme.

Only one of the 2DZones and 2DZonesSelectionList keys may be present.

Only one of the LogFile and LogDir keys may be present.

If there are no 2D zones in it this will be treated as an error.

This method performs the meshing synchronously i.e. it does the meshing and then
returns.

103

This method returns a hash from the name of the 2D zone to a Boolean indicating success
or failure.

mesh_async (ICM Exchange only)
arr=on.mesh_async(params)

This method is the same as ‘mesh’ except that it sets the meshing off to run
asynchronously.

It does not have the LogFile and LogDir keys

It returns an array of job IDs which may be used in the load_mesh_job, cancel_mesh_job,
download_mesh_job_log and mesh_job_status methods, as well as the
WSApplication.wait_for_jobs method.

mesh_job_status (ICM Exchange only)
a=mesh_job_status(job_id)

Given one of the jobs listed in the return value of mesh_async, returns the job’s current
status as a string.

model_object
mo=on.model_object

Returns a WSModelObject (or derived class) associated with the WSOpenNetwork. If a sim
was opened to obtain the WSOpenNetwork, the model object of that sim will be returned.

mscc_export_cctv_surveys (InfoAsset only)
on.mscc_export_cctv_surveys(export_file, export_images, selection_only, log_file)

e.g.

success = on.mscc_export_cctv_surveys(‘D:\output.xml’, true, false,

‘D:\log.txt’)

This method exports CCTV survey data from a Collection Network to the MSCC4 XML
format. The export_file argument specified the output XML file and log_file the location of a
text file for errors. The other two arguments take Boolean values. export_images controls
whether defect images are to be exported and selection_only will limit the export to selected
objects. The function returns true if successful.

mscc_export_manhole_survey (InfoAsset only)
on.mscc_export_manhole_surveys(export_file, export_images, selection_only, log_file)

e.g.

success = on.mscc_export_manhole_surveys(‘D:\output.xml’, true,

false, ‘D:\log.txt’)

This method exports manhole survey data from a Collection Network to the MSCC5 XML
format. The export_file argument specified the output XML file and log_file the location of a
text file for errors. The other two arguments take Boolean values. export_images controls
whether defect images are to be exported and selection_only will limit the export to selected
objects. The function returns true if successful.

104

mscc_import_cctv_surveys (InfoAsset only)
on.mscc_import_cctv_surveys(import_file, import_flag, import_images, id_gen, overwrite, log_file)

e.g.

success = on.mscc_import_cctv_surveys(‘D:\import.xml’, ‘IM’, true,

2, false, ‘D:\log.txt’)

This method imports CCTV survey data into a Collection Network from the MSCC4 XML
format. The import_file argument specifies the XML file and log_file the location of a text file
for errors. The import_flag text specifies the data flag for imported fields. import_images
controls whether defect images are to be imported. To prevent the overwriting of existing
surveys in the event of name clashes, set overwite to false. The id generation parameter,
id_gen, uses the following values (these correspond to the user interface options in the help).

 1 – StartNodeRef, Direction, Date and Time

 2 – StartNodeRef, Direction and an index for uniqueness

 3 – US node ID, Direction, Date and Time

 4 – US node ID, Direction and an index for uniqueness

 5 – ClientDefined1

 6 – ClientDefined2

 7 – ClientDefined3

mscc_import_manhole_surveys (InfoAsset Only)
on.mscc_import_manhole_surveys(import_file, import_flag, import_images, id_gen, overwrite,
log_file)

e.g.

success = on.mscc_import_manhole_surveys(‘D:\import.xml’, ‘IM’,

true, 2, false, ‘D:\log.txt’)

This method imports manhole survey data into a Collection Network from the MSCC5 XML
format. The import_file argument specifies the XML file and log_file the location of a text file
for errors. The import_flag text specifies the data flag for imported fields. import_images
controls whether defect images are to be imported. To prevent the overwriting of existing
surveys in the event of name clashes, set overwite to false. The id generation parameter,
id_gen, uses the following values (these correspond to the user interface options in the help).

 1 – Manhole/Node reference, Date and Time

 2 – Manhole/Node reference and an index for uniqueness

new_row_object
ro=on.new_row_object(type)

e.g.

ro=on.new_row_object('hw_node')

This method creates a new row object in the network. This must be done within a
transaction.

105

network_model_object
mo=on.network_model_object

Returns a WSModelObject (or derived class) associated with the WSOpenNetwork. If a sim
was opened to obtain the WSOpenNetwork, the model object of the network will still be
returned.

objects_in_polygon
vec=on.objects_in_polygon(polygon,type_or_types)

Returns a Ruby array of objects in a polygon. This is essentially the same as the
WSRowObject version except the polygon is passed in as the first parmeter. The purpose
of this method is to allow the polygon to be in one network and the objects found to be in
another e.g. the current network and the background network.

odic_import_ex
vec=on.odic_import_ex(format,config_file,params,…)

As for WSNetworkObject / WSNumbatNetworkObject above except that it returns an
array of WSRowObject objects, one for each object created or updated by the import (this
would not be possible in the WSNetworkObject / WSNumbatNetworkObject version,
since the network is not left open after the method, and WSRowObject objects may not be
open when their network is not).

odec_export_ex
on.odec_export_ex(format,config_file,params,…)

As for WSNetworkObject / WSNumbatNetworkObject above.

ribx_export_surveys (InfoAsset only)
on. ribx_export_surveys (export_file, selection_only, log_file)

e.g.

success = on.ribx_export_surveys(‘D:\output.xml’,false,‘D:\log.txt’)

This method exports manhole survey and cctv survey data from a Collection Network to the
RIBX XML format. The export_file argument specified the output XML file and log_file the
location of a text file for errors. The selection_only argument is a Boolean value and will limit
the export to selected objects if it is true. The function returns true if successful.

ribx_import_surveys (InfoAsset only)
on.ribx_import_surveys(import_file, import_flag, id_gen, overwrite, log_file)

e.g.

success = on.ribx_import_surveys(‘D:\import.xml’, ‘IM’, true, 2,

false, ‘D:\log.txt’)

This method imports CCTV survey & manhole survey data into a Collection Network from
the RIBX XML format. The import_file argument specifies the XML file and log_file the location
of a text file for errors. The import_flag text specifies the data flag for imported fields. To
prevent the overwriting of existing surveys in the event of name clashes, set overwite to false.
The id generation parameter, id_gen, uses the following values (these correspond to the user
interface options in the help).

106

 1 – StartNodeRef, Direction, Date and Time

 2 – StartNodeRef, Direction and an index for uniqueness

 3 – US node ID, Direction, Date and Time

 4 – US node ID, Direction and an index for uniqueness

row_object
ro=on.row_object(table,id)

e.g.

ro=on.row_object('hw_node','MH111111')

Given a table name and an ID (with the parts separated by . if it is a type with multiple key
fields) returns a WSRowObject or derived class. Returns nil if there is no such object in the
network.

row_objects
arr=on.row_objects(table)

e.g.

vec=on.row_objects('hw_node')

Given a table name returns a vector of WSRowObject (possibly including instances of
derived classes). Returns a vector of zero length if there are no objects of that type in the
network.

row_objects_selection
arr=on.row_objects_selection(‘hw_node’)

e.g.

vec=on.row_objects_selection('hw_node')

As row_objects but only returns objects currently selected in the WSOpenNetwork

row_objects_from_asset_id
arr=on.row_objects_from_asset_id(type,asset_id)

Given an asset ID and a type returns a vector of WSRowObject (possibly including
instances of derived classes) with that asset ID. Returns a vector of zero length if there are
no objects of that type in the network.

row_object_collection
roc=on.row_object_collection(type)

Given a type returns a WSRowObjectCollection (see below) representing a collection of
objects in the network which can be iterated through. The parameter can be the type or
class of the object, or nil in which case all objects will be returned.

107

row_object_collection_selection
roc=on.row_object_collection_selection(type)

As row_object_collection above, but only returns objects currently selected in the
WSOpenNetwork.

run_inference
on.run_inference(inference,ground_model, mode, zone_or_zone_category, error_file)

Runs the inference object on the network, which must be a collection asset network or a
distribution asset network.

The parameters are as follows:

Inference – the inference to be run –may be a WSModelObject, an object path or the
numerical ID of the model object. This must be of the appropriate inference object type for
the network.

Ground_model – optional ground model (used for inferring heigh). May be a
WSModelObject, an object path or the numerical ID of the model object. The
WSModelObject or path may be of a TIN ground model or a grid ground model, the
numerical ID may only be that of a grid ground model i.e. to use a TIN ground model you
must use a WSModelObject or path.

Mode – the mode of the inference, corresponding to the options on the dialog shown
when inference is run in the user interface. The permitted values are as follows:

• nil, false or the string 'Network' – run the inference on the whole network
• true or the string 'Selection' – run the inference on the current selection (which, of

course, must be set up within the script)
• the string 'Zone' – run the inference for the zone specified in the following

parameter.
• The string 'Category' – run the inference for zones with the zone specified in the

following parameter.

Zone_or_zone_category – a string representing the zone or zone category. This parameter
is only used if the previous parameter is 'Zone' or 'Category'.

Error_file – if this is a string, then error messages are written to the file named (which is
deleted prior to the method being run)

When run within the UI, the ground model parameter must be nil. If there is a ground
model loaded into the network (either TIN or grid), it will be used instead.

run_SQL
on.run_SQL(object,query)

This method runs the SQL query with the given table being the ‘current table ’ as it appears
in the SQL dialog i.e. the default table if the SQL query does not further qualify the table
name.

The names ‘_nodes’ or ‘_links’ can be used to run the SQL over all node or link tables in the
same way as can be achieved by selecting ‘All nodes’ or ‘All links’ in the dropdowns in the
SQL dialog.

108

run_stored_query_object (ICM / InfoAsset only)
on.run_stored_query_object(stored_query_object)

Runs a stored query object. The parameter is the stored query object to be run–may be a
WSModelObject, an object path or the numerical ID of the model object.

From version 6.5, when run from the UI, spatial queries and those with UI may be run from
the UI. This was not the case with previous versions and is not the case when they are run
from the Exchange products.

save_selection
on.save_selection(selection_list)

Saves the current selection (in the current scenario) to an already existing selection list
model object. The parameter may be a WSModelObject, an object path or the numerical
ID of the model object – providing in all cases that the model object is a selection list.

e.g.

mosl=db.model_object_from_type_and_id 'Selection List',14

mosl2=db.model_object_from_type_and_id 'Selection List',15

on.save_selection mosl.path

on.save_selection mosl2

on.save_selection 16

e.g.

on.save_selection mySelectionList.path

Saves the current selection to the already existing selection list.

scenarios (ICM / InfoAsset only)
on.scenarios.each do |s|

e.g.

on.scenarios do |s|

 puts s

end

This method provides a block of names of scenarios to be iterated through. The base
scenario is included in the results as the string ‘Base’, in English.

search_at_point(x,y,distance,types)
roc=on.search_at_point(x,y,distance,types)

Finds the objects within a distance of a given point, returning a vector of WSRowObject.
Types may be nil (in which case all tables are searched), a string or an array of strings,
these strings may be the name of a type or a category. It may not contain duplicates, and
may not contain a category and a table within that category.

109

selection_size
n=on.selection_size

Returns the number of objects selected.

snapshot_import
on.snapshot_import(filename) (ICM / InfoAsset)

on.snapshort_import(filename,parameters_hash) (WS Pro)

For ICM and InfoAsset Manager, this Imports a snapshot file into the network from the
given filename. This has the same effect as calling snapshot_import_ex with the second
parameter being nil

For WS Pro this takes a second argument which is a parameters hash.

snapshot_import_ex (ICM and InfoAsset Only)
on.snapshot_import_ex(filename,parameters_hash)

Imports a snapshot file into the network from the given filename. The second parameter
must be a hash from strings to values as shown below or nil. If it is nil then the defaults will
be used.

Valid keys for the hash are as follows:

Tables – Array of strings - If present, a list of the internal table names (as returned by the
table_names method of this class) If not present then all tables will be exported.

AllowDeletes - Boolean

ImportGeoPlanPropertiesAndThemes - Boolean

UpdateExistingObjectsFoundByID - Boolean

UpdateExistingObjectsFoundByUID – Boolean

ImportImageFiles - Boolean

snapshot_export (ICM / InfoAsset only)

on.snapshot_export(filename)

Exports a snapshot of the network to the given filename.

All objects are exported from all tables, but image files and GeoPlan properties and
themes are not exported.

The method snapshot_export_ex allows more flexibility over what is exported.

Snapshots cannot be exported from networks with uncommitted changes.

snapshot_export_ex (ICM InfoAsset Only)
on.snapshot_ex(filename,parameters_hash)

Exports a snapshot of the network to the given filename. The second parameter must
either be nil or a hash from strings to values as follows:

110

SelectedOnly – (Boolean). If present and true, only the currently selected objects
are exported, otherwise by default all objects of the appropriate tables are
exported.

IncludeImageFiles – (Boolean).If present and true, includes the data for image files
in the network, otherwise by default images are not exported.

IncludeGeoPlanPropertiesAndThemes – (Boolean) If present and true, includes the
data for GeoPlan properties and themes, otherwise by default they are not
exported

ChangesFromVersion – (integer) If present, the snapshot will be of the different
from the network’s version with this commit ID, otherwise by default the current
version of the network will be exported.

Tables – (array of strings) If present, a list of the internal table names (as returned
by the table_names method of this class) If not present then all tables will be
exported.

The SelectedOnlyOptions must not be mixed with the Tables option or the
ChangesFromVersion option.

Any other keys for the hash are treated as an error and an exception raised.

If the second parameter is nil then the default are used i.e. all objects from all tables are
exported but image files and GeoPlan properties and themes are not, yielding the same
result as calling snapshot_export.

Snapshots cannot be exported from networks with uncommitted changes.

snapshot_scan
details_hash=on.snapshot_scan(filename)

Given a snapshot file, this method scans it and returns a hash containing the details as
follows. The keys are all strings.

NetworkGUID – string – the GUID of the network from which the snapshot was
exported.

CommitGUID – string – the GUID of the commit of the network from which the
snapshot was exported.

CommitID – integer – the ID of the commit of the network from which the snapshot
was exported.

NetworkTypeCode – string – the type of network from which the snapshot was
exported. This matches the name of the network type e.g. ‘Collection Network’

DatabaseGUID – string – the GUID associated with the database version from
which the snapshot was exported.

DatabaseSubVersion – integer – the ‘subversion’ associated with the database
version from which the snapshot was exported.

111

UnknownTableCount – integer – the number of tables in the snapshot not
recognised by the software, this will only be greater than 0 if the snapshot were
exported from a more recent version of the software.

FileCount – integer –the number of image files contained within the snapshot.

ContainsGeoPlanPropertiesAndThemes – Boolean – true if the snapshot was
exported with the option to included GeoPlan properties and themes.

Tables – hash – a hash containing information about the tables exported as
described below.

The Tables hash is a hash from the table names (strings) to a hash containing information
about each table.

The hash of information about each table is as follows. The keys are all strings and the
values are all integers.

ObjectCount – the number of objects in the snapshot for the table.

ObjectsWithOldVersionsCount -

ObjectsFoundByUID -

ObjectsFoundByID -

DeleteRecordsCount -

UnknownFieldCount –the number of unknown fields for the table, this will be zero unless
the export is from a more recent version of the software than the user is using to import the
data.

table_names
arr=on.table_names

e.g.

on.table_names.each do |n|

 puts n

end

This method returns an array of the tables names for the WSOpenNetwork – these are the
internal names.

table
t=on.table(name)

Given a table name, this method returns a WSTableInfo object for that table.

tables
arr=on.tables

This method returns an array of WSTableInfo objects for the WSOpenNetwork.

112

timestep_count
n=on.timestep_count

This method returns the number of timesteps in the results for the sim, it does not include
the ‘maximum’ ‘timestep’ so for sims without any time varying results this method will
return 0.

timestep_time
t=on.timestep_time(timestep_no)

This method returns the time for the timestep with the index given as the method’s
parameter.

transaction_begin
on.transaction_begin

Changes to objects in the network should in general be included within transactions. A
transaction begins with transaction_begin, then may be ended either with
transaction_commit, which commits the changes since transaction_begin, or with
transaction_rollback, which cancels the changes since transaction_begin

transaction_commit
on.transaction_commit

Commits the transaction – see above.

transaction_rollback
on.transaction_end

Ends the transaction – see above.

update_cctv_scores
on.update_cctv_scores

Calculates CCTV scores for all surveys in the network using the current standard.

validate
v=on.validate(scenarios)

This method validates the scenario or scenarios given in the parameter, returning a
WSValidation object.

The parameter may be nil, in which case the Base scenario is validated, a string in which
case the named scenario (which may be ‘Base’) will be validated, or an array of strings, in
which case all the named scenarios (which may include ‘Base’) will be validated.

XPRAFTS_import (ICM Exchange only)
on.XPRAFTS_import(filepath,useLargeSize,splitOnLagLinks,combineSubcat,logFilepath)

Updates the WSOpenNetwork from the XPRAFTS xpx file specified.

filepath refers to the xpx file exported from XPRAFTS.

Set useLargeSize if the XPRAFTS model is configured to use the Large unit size.

113

Set splitOnLagLinks to true if you want to split networks downstream of channel links and
maintain lag link data, otherwise set to false to maintain network connectivity by converting
downstream lag links to channel links.

Set combineSubcat to true to combine the 1st and 2nd subcatchment as a single
subcatchment polygon. This would set the Per-surface RAFTS B option and setting the
Rafts adapt factor and Manning’s roughness at the runoff surface level.

e.g.

model_group.XPRAFTS_import('d:\\temp\\1.xpx',true,

false,true,'d:\\temp\\log.txt')

WSRowObject
All the methods of this class can be used in the UIs and in all three Exchange products.

 []
[]=

ro['field']=value

v=ro['field']

ro.field_name = value

v=ro.field_name

ro['_tag']=value

v=ro['_tag']

ro._tag = value

v=ro._tag

The above are used to set and get values of fields for WSRowObject objects as described
in the ‘getting and setting values’ section above.

category
s=ro.category

Returns the category name (as described above) of the object’s table as a string.

contains?
b=ro.contains?(ro2)

Returns true if polygon ro contains the object ro2.

delete
ro.delete

Deletes the row object.

field
f=ro.field(fieldname)

Returns the WSFieldInfo object associated with the named field in the WSRowObject’s
table. This returns information about the named field, which does not depend on the actual
WSRowObject or its value for the field – it is essentially a short cut to getting the table and
then getting the field info from that.

114

gauge_results
arr=ro.gauge_results(results_field_name)

Returns an array of the results for the given results field name for the object at all gauge
timesteps – the field must have time varying results. If the object or field does not have
gauge results it will return the ‘normal’ results.

id
id=ro.id

Returns the ID of the object as a string. If the object has a multi-part primary key, then the
key will be output with part separated by the ‘.’ character.

id=
ro.id=newid

Updates the ID of the row object.

is_inside?
b=ro.is_inside?(ro2)

Returns true if ro2 is inside the polygon ro2.

navigate
navigate1
vec=ro.navigate(navigation_type)
ro2=ro.navigate(navigation_type)

The navigate and navigate1 methods are used to navigate between objects and other
objects to which they are physically related.

The navigate method may be used to navigate using one-to-one and one-to-many links
and returns an array of WSRowObject objects. The navigate1 method may only be used to
navigate using one-to-one links and returns a WSRowObject or nil if there is no object
related to the object by that particular navigation type.

The navigation types are the same as those used within the SQL in the software as follows:

joined No

us_node No

ds_node No

custom No

node No

lateral_pipe No

pipe No

us_links No

ds_links No

115

sanitary_manhole No

storm_manhole No

sanitary_pipe No

storm_pipe No

property No

data_logger No

smoke_test No

drain_tests Yes

manhole_surveys Yes

manhole_repairs Yes

gps_surveys Yes

incidents Yes

monitoring_surveys Yes

pipe_repairs Yes

smoke_tests Yes

dye_tests Yes

cctv_surveys Yes

properties Yes

smoke_defects Yes

pipe_samples Yes

joined_pipes Yes

pipe_cleans Yes

maintenance_records Yes

hydrant_tests Yes

meter_tests Yes

meters Yes

all_us_links No

all_ds_links No

general_maintenance_records Yes

116

tasks No

resources No

manhole No

valve No

hydrant No

meter No

materials No

orders No

connection_pipe No

asset_name_groups No

asset No

leak_detections No

general_surveys No

fog_inspections No

objects_in_polygon
vec=ro.objects_in_polygon(type_or_types)

Returns a vector of the objects in the polygon (from the same network). The type or types
parameter may be nil (in which case all tables are searched), a string or an array of strings,
these strings may be the name of a type or a category. It may not contain duplicates, and
may not contain a category and a table within that category. This is the same as the similar
parameter in the WSNumbatNetworkObject’s search_at_point method.

result
f=ro.result(result_fields_name)

Returns the result for the given results field name for the object at the current timestep.

results
arr=ro.results(result_field_name)

Returns an array of the results for the given results field name for the object at all
timesteps – the field must have time varying results.

selected?
b=ro.selected?

returns True if the object is currently selected, False otherwise

117

selected=
ro.selected=b

e.g.

ro.selected=true

ro2.selected=false

If the value on the right of the = evaluates to true, the object is selected, otherwise it is
deselected.

table
s=ro.table

Returns the internal name of the object’s table as a string.

table_info
ti=ro.table_info

Returns the WSTableInfo object for the object’s table, this may be used to get the list of
fields for the object.

write
ro .write

After changing field values it is necessary to call the write method, otherwise the changes
will not take effect.

WSNode
This class is derived from the WSRowObject class, and represents objects of ‘category’
node as described above. As with the WSRowObject class, all the methods of this class
can be used in the UIs and in all three Exchange products. It has two extra methods:

us_links
roc=node.us_links

Returns a WSRowObjectCollection (see below) representing all the upstream links of the
node. If there are no upstream links a collection of length zero is returned.

ds_links
roc=node.ds_links

Returns a WSRowObjectCollection (see below) representing all the downstream links of
the node. If there are no upstream links a collection of length zero is returned.

WSLink
This class is derived from the WSRowObject class, and represents objects of ‘category’ link
as described above. As with the WSRowObject class, all the methods of this class can be
used in the UIs and in all three Exchange products. It has two extra methods:

118

us_node
ro=link.us_node

Returns a WSRowObject representing the link’s upstream node, or nil if it doesn’t have one.

ds_node
ro=link.ds_node

Returns a WSRowObject representing the link’s downstream node, or nil if it doesn’t have
one.

WSRiskAnalysisRunObject
This class is only applicable to ICM and its method can only be used in ICM Exchange.

run
raro.run

Performs the risk analysis run.

WSRowObjectCollection
All the methods of this class can be used in the UIs and in all three Exchange products.

length
n=roc.length

Returns the number of WSRowObjects in the collection

[]
ro=roc[n]

Returns the nth WSRowObject in the collection. The index is 0 based i.e. valid values are
from 0 to length-1.

each
roc.each {|ro|}

Allows the user to iterate through all objects in the collection e.g.

my_network.row_object_collection('_nodes').each do |ro|

 puts ro.id

end

WSTableInfo
All the methods of this class can be used in the UIs and in all three Exchange products.

description
s=ti.description

returns the description of the table.

119

fields
arr=ti.fields

returns an array of the fields for this table – the fields are of type WSFieldInfo

- flags are treated as separate fields.

name
s=ti.name

returns the internal name of the table.

results_fields
arr=ti.results_fields

Returns an array of results fields as instances of the WSFieldInfo class.

Note that the fields returned and the values of their has_time_varying_results? and
has_max_results? methods reflects the results of the specific simulation run you are
looking at the results of, the details of which can vary considerably depending on the
options selected when performing the run. This is different from the fields method which
returns the fields for the network which do not on the whole change for a network type for
a particular release of the software, except for user defined fields and tables in InfoAsset.

WSFieldInfo
All the methods of this class can be used in the UIs and in all three Exchange products.

data_type
s=fi.data_type

Returns the data type of the field as a string. The method is named ‘data_type’ to
distinguish it from the Ruby type. The data types are described in InfoWorks terms, not
Ruby data types. The types are as follows:

• Flag
• Boolean
• Single
• Double
• Short
• Long
• Date
• String
• Array:Long
• Array:Double
• WSStructurei
• GUID

Flag fields have their type returned as ‘Flag’, their underlying Ruby type is the Ruby string.

description
s=fi.description

returns the description of the table

120

fields
arr=fi.fields

returns an array of fields if the field is itself a ‘structure blob’. If the field is not a structure
blob, this method returns nil.

has_time_varying_results?
b=fi.has_time_varying_results?

This method returns true if the field has time varying results i.e. results for the timesteps in
the simulation. It will return false for network fields. Please see the WSTableInfo
results_fields method for more discussion.

has_max_results?
b=fi.has_max_results?

This method returns true if the field has a maximum / summary result i.e. if it has a
maximum / summary result displayed when the simulation is open in the UI and the
timestep control is set to the ‘maximum’ ‘timestep’. It will return false for network fields.
Please see the WSTableInfo results_fields method for more discussion.

name
s=fi.name

returns the name of the field

read_only?
bReadOnly=fi.read_only?

Returns true if the field is read only, false if it isn't

size (from version 7.0)
n=fi.size

Returns 4 if the field is a flag field, the length of a string field for string fields or 0 otherwise.

WSCommit
This class is only applicable to ICM and InfoAsset. The methods may only be used in ICM
Exchange and InfoAsset Exchange.

The methods of this class are all read only and each of them returns the value in one of the
fields that appears in the commit grid as follows:

branch_id

comment

commit_id

date

deleted_count

inserted_count

modified_count

121

setting_changed_count

user

WSCommits
This class is only applicable to ICM and InfoAsset. The methods may only be used in ICM
Exchange and InfoAsset Exchange.

This class is a collection class and thus has the [], each and length methods defined. Each
individual object in the collection is an instance of the WSCommit class.

WSStructure
All the methods of this class can be used in the UIs and in all three Exchange products.

each
sb.each {|v|}

Iterates through the collection.

length
n=sb.length

Returns the number of WSStructureRow objects in the WSStructure collection

length=
sb.length=n

Sets the number of WSStructureRow objects in the WSStructure collection

size
n=sb.size

Returns the number of WSStructureRow objects in the WSStructure collection (synonym
for length)

size=
sb.size=n

Sets the number of WSStructureRow objects in the WSStructure collection (synonym for
length)

write
sb.write

Causes the changes to the WSStructure, i.e. changes to its length, data in any new rows,
and changes to data in existing rows to be ‘written back’ to the WSRowObject. If this is not
called then changes to the WSStructure will not take effect.

Once any changes to the structure blob have been written back to the WSRowObject, the
WSRowObject must be written to the database with its write method (and then, of course,
the transaction must be committed and the network written to the database with the
commit method or in the user interface!).

122

[]
v=sb[n]

Returns the nth WSStructureRow object in the collection (zero based).

WSStructureRow
All the methods of this class can be used in the UIs and in all three Exchange products.

[]
v=row[val]

Returns the value of the named field in the WSStructureRow object.

[]=
row[val]=v

Sets the value of the named field in the WSStructureRow object.

WSValidations
These methods are relevant to ICM Exchange and WS Pro Exchange

error_count
n=vals.error_count

Returns the number of errors found when performing the validation.

warning_count
n=vals.warning_count

Returns the number of warnings found when performing the validation.

length
n=vals.length

Returns the number of WSValidation objects in the WSValidations collection

each
n.each {|v|}

Iterates through the collection.

[]
v=vals[n]

Returns the nth WSValidation object in the collection (zero based).

WSValidation
The methods of this class are are all read only and each of them returns the value in one of
the fields that appears in the validation windows when the network is validated within the
user interface.

These methods are relevant to ICM Exchange and WS Pro Exchange

123

code
n=v.code

Returns the code of the validation message.

field
s=v.field

Returns the field from the validation message. This may not be a real database field, but if
it is then the internal name rather than the description will be returned.

field_description
s=v.field_description

Returns the field column from the validation message as it appears in the validation
window.

object_id
s=v.object_id

Returns ID for the object in the validation message, if any.

object_type
s=v.object_type

Returns the description from the object type column of the validation message, if any.

message
s=v.object_message

Returns the validation message.

priority
n=v.priority

Returns the priority of the validation message.

type
n=v.type

Returns the type of the validation message: ‘error’, ‘warning’ or ‘information’.

scenario
s=v.scenario

Returns the scenario name for the validation message – returns ‘Base’ for the base
scenario.

(ICM Exchange only)

WSRunScheduler
This class is used to set up and modify WS Pro runs. A number of run types are supported
– see Appendix 4

124

new
rs=WSRunScheduler.new

Creates a new WSRunScheduler object.

set_parameters
rs.set_parameters(parameter_hash)

Sets run parameters using values from the hash parameter_hash

load
b=rs.load(run_id)

Loads the parameters from run with ID run ID (must be an integer). Returns true if
successful, false otherwise.

create_new_run
b=rs.create_new_run(group_id)

Creates a new run in the specified run group using the currently-set parameters. Returns
true if successful.

save
b=rs.save(autorename)

Saves current parameters to a previously-loaded run. May create a new (renamed) run if
autoRename is true and the loaded run is readonly. Returns true if successful. Throws an
exception if autoRename is false and the loaded run is readonly.

validate
b=rs.validate(filename)

Validates the run parameters saving any validation errors to the specified file. Returns true
if validated successfully with no errors.

get_run_mo
mo=rs.get_run_mo

Returns a WSModelObject that is the run that was associated with the WSRunScheduler
by the most recent call to any of load, create_new_run or save

WSRun
run
run.run

Performs the run. Note than only normal runs are current supported.

release
run.release

Can be called after the run has finished. Removes the run from the run queue.

WSSWMMRunBuilder
This class is used to set up and modify SWMM runs in ICM Exchange

125

new
rb= WSSWMMRunBuilder.new

Creates a new WSSWMMRunBuilder object.

list_parameters
arr=rb.list_parameters

This method returns a list of run parameters (which will be the same for all runs). This is for
convenience when used in conjunction with [] and []=

set_parameters
rb.set_parameters(parameter_hash)

Sets run parameters using values from the hash parameter_hash

load
b=rb.load(run)

Loads the parameters from the run specified which as usual can be an ID, a path or a
WSModelObject.. Returns true if successful, false otherwise.

create_new_run
b=rb.create_new_run(group_id)

Creates a new run in the specified run group using the currently-set parameters. Returns
true if successful.

validate
b=rb.validate(filename)

Validates the run parameters saving any validation errors to the specified file. Returns true
if validated successfully with no errors.

get_run_mo
mo=rb.get_run_mo

Returns a WSModelObject that is the run that was associated with the
WSSWMMRunBuilder by the most recent call to any of load, create_new_run or save

[] / []=
rb[‘key’]=value
puts rb[‘key’].to_s

Sets and gets run parameters.

126

Appendix 1 – Pollutograph codes
List of pollutograph codes (relevant only for ICM).

 P2D

P2A

P1D

P1A

NHD

COD

COA

PH_

SAL

NO3

NO2

DO_

COL

TW_

BOD

TPD

TPA

TKD

TKA

SF2

SF1

P4D

P4A

P3D

P3A

BOA

127

Appendix 2 – ICM InfoWorks Run
Parameters
The fields that are set on the run dialog in the user interface are, in ICM Exchange, set as
key value pairs within the hash passed in as the 6th parameter of the new_run method,
called on the asset group in which the run is to be created.

The keys of the hash are all strings, the values are of a number of different types as
described below.

Where the values have units, they must always be specified in S.I. units.

The run parameters used for ICM Exchange broadly speaking correspond to those set in
the user interface. The list below therefore includes the field’s location in the run dialog and
its sub-dialogs, and its description in the user interface if the difference is noteworthy.

Consult InfoWorks ICM's main help for more details.

The behaviour of unspecified values for run parameters is as follows: When the run is
created a number of the run parameters are supplied with default values. This means that
were you to create a run, passing an empty hash in as the last parameter, and then to look
at the values for the parameters using the [] method of the run object i.e.

db.list_read_write_run_fields.each do |p|

 if !run[p].nil?

 puts "#{p} #{run[p]}"

 end

end

you would see that a number of the fields have non-nil values as follows:

Duration 60

DWFMultiplier 32

EveryNode false

EveryOutflow false

EverySubcatchment false

GaugeMultiplier 1

IncludeBaseFlow false

IncludeLevel false

IncludeNode false

IncludeOutflow false

IncludeRainfall false

128

IncludeRunoff false

LevelLag 0

LevelThreshold 0.0

NodeLag 0

NodeThreshold 0.0

OutflowLag 0

OutflowThreshold 0.0

RainfallLag 0

RainfallThreshold 0.0

RainType false

ResultsMultiplier 6

RTCLag 0

Start Time 0.0

SubcatchmentLag 0

SubcatchmentThreshold 0.0

TimeStep 60

All other fields are treated as nil by default. However, for a number of fields a nil value is
treated as a particular default value for that field as specified in the detailed notes for the
fields in question.

Where the name of the field below contains spaces or underscores the spaces or
underscores should be used when setting the value in the hash.

Always Use Final State

Data type: Boolean

Location in UI: Main page col 2

Description in UI: Always use state without initialisation

Buildup Time

Data type: Long Integer

Location in UI: Water Quality Form

129

Notes: BuildUp time – used in water quality simulations, may either be nil (in which case it
is not used) or a value between 1 and 1000000

CheckPumps

Data type: Boolean

Location in UI: Timestep Control Sheet - Control Page

Comment

Data type: String

Location in UI: Tree object property page

ConcentrationWarning

Data type: Double

Location in UI: Diagnostics Form

Description in UI: Concentration

Depth

Data type: Double

Location in UI: 2D Sheet, Tolerance Tab

Nil treated as: 0.001

Valid range: 0 - 99999999

Notes: Depth and InnudationMapDepthThreshold – Depth must be greater than 0 and less
then 99999999, and also must be less then InnundationMapDepthThreshold.

Depth_threshold

Data type: Double

Location in UI: 2d Sheet, Steady State Tab

Description in UI: Threshold for 1-hour change in depth

DontApplyRainfallSmoothing

Data type: Boolean

130

Location in UI: Main Page col 2

Nil treated as: TRUE

Notes: NB, this is the opposite sense to the check box on the dialog

DontLogModeSwitches

Data type: Boolean

Location in UI: Diagnostics Form

Notes: NB, this is the opposite sense to the check box on the dialog

DontLogRTCRuleChanges

Data type: Boolean

Location in UI: Diagnostics Form

Notes: NB, this is the opposite sense to the check box on the dialog

DontOutputRTCState

Data type: Boolean

Location in UI: Diagnostics Form

Notes: NB, this is the opposite sense to the check box on the dialog

Duration

Data type: Long Integer

Location in UI: Main Page col 1

Default: 60

Notes: Duration of simulation, in units used in duration unit

DurationUnit

Data type: String

Location in UI: Main Page col 1

Notes: The DurationType field must be nil or one of the strings ‘Minutes’, ‘Hours’, ‘Days’,
‘Weeks’, ‘Years’. It is important to realise that the value of this fields does NOT affect the
meaning of the Duration field, which is always in minutes, it merely affects the way the

131

duration is displayed e.g. to run a simulation for a day, and have the time in the run view
displayed as ‘1 day’ you should enter the values 1440 in the Duration fields and ‘Days’ in the
DurationType field.

DWFDefinition

Data type: String

Location in UI: Timestep Control Sheet - RTC Page

Default: '

Description in UI: DWF Mode Definition

DWFModeResults

Data type: Boolean

Location in UI: Timestep Control Sheet - Control Page

Description in UI: Store results when in DWF mode

DWFMultiplier

Data type: Long Integer

Location in UI: Timestep Control Sheet - Control Page

Default: 32

Notes: Must be a power of 2 between 1 and 2048

End Duration

Data type: Boolean

Location in UI: Main Page col 1

Notes: True for time/date, false for duration

End Time

Data type: Double / DateTime (see note 1)

Location in UI: Main Page col 1

Notes: See note 1

132

EveryNode

Data type: Boolean

Location in UI: Timestep Control Sheet - Node Page

Default: false

Notes: True = Total flow into system, False = flow at each node

EveryOutflow

Data type: Boolean

Location in UI: Timestep Control Sheet - Outflows Page

Default: false

Notes: True = Total flow from system, False = flow at each outfall

EverySubcatchment

Data type: Boolean

Location in UI: Timestep Control Sheet - Subcatchment Page

Default: false

Notes: True = Total flow into system, False = flow at each subcatchment

ExitOnFailedInit

Data type: Boolean

Location in UI: Main Page col 2

Notes: Exit if initialisation fails

ExitOnFailedInitCompletion

Data type: Boolean

Location in UI: Main Page col 2

Description in UI: Exit if initialisation complete in (mins)

Notes: If the ExitOnFailedInitCompletion field is set to true, the InitCompletionMinutes field
must be set to a value between 1 and 99999999

133

GaugeMultiplier

Data type: Long Integer

Location in UI: Main Page col 1

Default: 1

Valid range: 0 - 99999

Notes: Gauge timestep multiplier

Gauges

Data type: Index

Location in UI: Main Page col 1

Description in UI: Additional links to be gauged

Notes: a selection list object

GetStartTimeFromRainEvent

Data type: Boolean

Location in UI: Main Page col 2

Ground Infiltration

Data type: Index

Location in UI: Main Page col 3

Notes: Ground Infiltration object used for simulation

IncludeBaseFlow

Data type: Boolean

Location in UI: Timestep Control Sheet - Subcatchments Page

Default: false

Description in UI: Include Base Flow

IncludeLevel

Data type: Boolean

134

Location in UI: Timestep Control Sheet - Level Page

Default: false

Description in UI: Check for levels

IncludeNode

Data type: Boolean

Location in UI: Timestep Control Sheet - Node Page

Default: false

Description in UI: Check for inflows

IncludeOutflow

Data type: Boolean

Location in UI: Timestep Control Sheet - Outflows Page

Default: false

Description in UI: Check for ouflows

IncludeRainfall

Data type: Boolean

Location in UI: Timestep Control Sheet - Rainfall Page

Default: false

Description in UI: Check for rainfall

IncludeRTC

Data type: Boolean

Location in UI: Timestep Control Sheet - RTC Page

Description in UI: Check RTC

IncludeRunoff

Data type: Boolean

Location in UI: Timestep Control Sheet - Subcatchments Page

135

Default: false

Description in UI: Include Runoff

In flow

Data type: Index

Location in UI: Main Page col 3

Notes: Inflow object used for simulation

In itCompletionMinutes

Data type: Long Integer

Location in UI: Main page col 2

In itial Conditions 2D

Data type: Index

Location in UI: Main Page col 3

Notes: 2D Initial conditions object used for simulation

InundationMapDepthThreshold

Data type: Double

Location in UI: 2D Sheet, Advanced Tab

Nil treated as: 0.01

Valid range: >=0

Notes: see Depth above.

Level

Data type: Index

Location in UI: Main Page col 3

Notes: Level object used for simulation

136

LevelLag

Data type: Long Integer

Location in UI: Timestep Control Sheet - Level Page

Default: 0

LevelThreshold

Data type: Double

Location in UI: Timestep Control Sheet - Level Page

Default: 0

Valid range: 0 – 99999999

MaxVelocity

Data type: Double

Location in UI: 2D Sheet, Advanced Tab

Nil treated as: 10

Valid range: 0 - 99999999

Minor Timestep 2D

Data type: Boolean

Location in UI: 2D Sheet, Advanced Tab

Description in UI: Link 1D-2D calculations at minor timestep

Momentum

Data type: Double

Location in UI: 2D Sheet, Tolerance Tab

Nil treated as: 0.01

Valid range: 0 - 99999999

NodeLag

Data type: Long Integer

137

Location in UI: Timestep Control Sheet - Node Page

Default: 0

NodeThreshold

Data type: Double

Location in UI: Timestep Control Sheet - Node Page

Default: 0

OutflowLag

Data type: Long Integer

Location in UI: Timestep Control Sheet - Outflows Page

Default: 0

OutflowThreshold

Data type: Double

Location in UI: Timestep Control Sheet - Outflows Page

Default: 0

Pipe Sediment Data

Data type: Index

Location in UI: Main Page col 3

Notes: Pipe sediment data object used for simulation

Pollutant Graph

Data type: Index

Location in UI: Main Page col 3

Notes: Pollutant graph object used for simulation

QM Dependent Fractions

Data type: Boolean

Location in UI: Water Quality Form

138

Description in UI: Dependent Sediment Fractions

QM Hydraulic Feedback

Data type: Boolean

Location in UI: Water Quality Form

Description in UI: Erosion Deposition Affects Hydraulics

QM Model Macrophytes

Data type: Boolean

Location in UI: Water Quality Form

QM Multiplier

Data type: Long Integer

Location in UI: Water Quality Form

Valid range: 0 – 10

QM Native Washoff Routing

Data type: Boolean

Location in UI: Water Quality Form

QM Oxygen Demand

Data type: Text

Location in UI: Water Quality Form

Nil treated as: BOD

QM Pollutant Enabled
introduced in 8.0.1

Date Type: Array

This is an array of strings e.g. e.g. ‘BOD’, ‘BODSF1’, ‘PL1SF2’. The 2d character pollultants e.g.
PH have an underscore i.e. ‘PH_’. The pollutants are:

"BOD",
"COD",

139

"TKN",
"NH4",
"TPH",
"PL1",
"PL2",
"PL3",
"PL4",
"DO_",
"NO2",
"NO3",
"PH_",
"SAL",
"TW_",
"COL",
"ALG",
"SI_"

With SF1 or SF2 appended for the sediment fractions.

The easiest way to understand this field is to set up a run in the UI and export the array.

RainfallLag

Data type: Long Integer

Location in UI: Timestep Control Sheet - Rainfall Page

Default: 0

RainfallThreshold

Data type: Double

Location in UI: Timestep Control Sheet - Rainfall Page

Default: 0

RainType

Data type: Boolean

Location in UI: 2D Sheet, Advanced Tab

Default: false

Description in UI: Ignore rain falling on dry elements

ReadSubeventNAPIAndAntecedDepth

Data type: Boolean

140

Location in UI: Main Page col 2

Description in UI: Read subevent NAPI and Antecdent Depth

ReadSubeventParams

Data type: Boolean

Location in UI: Main Page col 2

Description in UI: Read subevent UCWI & Evaporation

Regulator

Data type: Index

Location in UI: Main Page col 2

Notes: Regulator object used for simulation

ResultsMultiplier

Data type: Long Integer

Location in UI: Main Page col 1

Default: 6

Valid range: 0 - 99999

Description in UI: Results timestep multiplier

RTCLag

Data type: Long Integer

Location in UI: Timestep Control Sheet - RTC Page

Default: 0

Valid range: 0 - 99999999

RTCRulesOverride

Data type: Boolean

Location in UI: Main Page col 2

Description in UI: RTC rules override pump on levels

141

RunoffOnly

Data type: Boolean

Location in UI: Main Page col 2

Notes: Restrictions as in UI

Save Final State

Data type: Boolean

Location in UI: Main Page col 2

Sediment Fraction Enabled
introduced in 8.0.1

Data type: Array

This parameter must be an array of 2 Boolean values, true if you want that sediment
fraction and false if you don’t.

Sim

Data type: Index

Location in UI: Main Page col 2

Notes: Sim object used for the initial state

SpillCorrection

Data type: Boolean

Location in UI: 2D Sheet, Advanced Tab

Nil treated as: TRUE

Description in UI: Adjust bank levels based on adjacent element ground levels

Start Time

Data type: Double / DateTime

Location in UI: Main Page col 1

Default: 0

Notes: See note 1

142

StopOnEndOfTimeVaryingData

Data type: Boolean

Location in UI: Timestep Control Sheet - Control Page

Description in UI: Stop simulation at the end of time varying data

StorePRN

Data type: Boolean

Location in UI: Main Page col 2

Description in UI: Summary (PRN) results

StormDefinition

Data type: String

Location in UI: Timestep Control Sheet - RTC Page

Default: '

Description in UI: Storm Mode Condition

SubcatchmentLag

Data type: Long Integer

Location in UI: Timestep Control Sheet - Subcatchments Page

Default: 0

SubcatchmentThreshold

Data type: Double

Location in UI: Timestep Control Sheet - Subcatchments Page

Default: 0

Theta

Data type: Double

Location in UI: 2D Sheet, Advanced Tab

143

Nil treated as: 0.9

Valid range: 0 - 99999999

Time_lag

Data type: Double

Location in UI: 2d Sheet, Steady State Tab

Nil treated as: 60

TimeStep

Data type: Long Integer

Location in UI: Main Page col 1

Default: 60

Valid range: 1 - 99999

Description in UI: Timestep (s)

timestep_stability_control

Data type: Double

Location in UI: 2D Sheet, Advanced Tab

Nil treated as: 0.95

Valid range: 0 - 1

TimestepLog

Data type: Boolean

Location in UI: Diagnostics Form

Trade Waste

Data type: Index

Location in UI: Main Page col 3

Notes: Trade Waste object used for simulation

144

Use_local_steady_state

Data type: Boolean

Location in UI: 2d Sheet, Steady State Tab

Description in UI: Deactivate steady state areas

UseGPU

Data type: Long Integer

Location in UI: 2D Sheet, GPU Tab

Notes: 0 or nil = never, 1 = if available, 2 = always

UseQM

Data type: Boolean

Location in UI: Main Page col 3

Velocity

Data type: Double

Location in UI: 2D Sheet, Tolerance Tab

Nil treated as: 0.01

Valid range: 0 - 99999999

Velocity_threshold

Data type: Double

Location in UI: 2d Sheet, Steady State Tab

Description in UI: Threshold for 1-hour change in velocity

VelocityWarning

Data type: Double

Location in UI: Diagnostics Form

Description in UI: Velocity

145

VolumeBalanceWarning

Data type: Double

Location in UI: Diagnostics Form

Description in UI: Volume balance

WarningBag
introduced in 8.1

Data type: Hash

This value holds the warning thresholds for water priority parameters. It is a hash from
strings to floating point numbers.

The keys are as described in the ‘QM Pollutant Enabled’ key above.

As with that key, the best way to understand this parameter is to set up values in the UI
and export them in a script.

Waste Water

Data type: Index

Location in UI: Main Page col 3

Description in UI: Waste Water object used for simulation

Working

Data type: Boolean

Location in UI: Main Page col 1

Description in UI: Allow re-runs using updated network

Notes: Must be set to true before the update_to_latest method may be used.

Notes

1. As ICM Exchange does not have a Ruby data time to represent the use of times in
ICM simulations, in which both relative times and absolute times are used, the
following convention is used for the start time and end time:
Absolute times are represented as a DateTime object, relative times as a negative
double – a time in seconds. This is similar to the representation used in the results
binary file. Therefore to set a relative time, negate the number of seconds and set
the field to this value, to set an absolute time use a ruby DateTime object as
described earlier in this document.

146

When reading a value from the database to determine whether the start time is
relative of absolute you will want to use code like this:

myStartTime=working['Start Time']

if myStartTime.nil?

 myText='nil'

elsif myStartTime.kind_of? DateTime

 myText="absolute -

#{myStartTime.year}/#{myStartTime.month}/#{myStartTime.day}"

elsif myStartTime.kind_of? Float

 myText="relative - #{-myStartTime} seconds"

else

 myText="unexpected type"

end

puts "#{myText}"

2. The percentage volume balance is not available from ICM Exchange.

147

Appendix 3 – ICM SWMM Run
Parameters
The fields that are set on the run dialog in the user interface are, in ICM Exchange, set as
key value pairs within the hash passed in as the 6 th parameter of the new_run method,
called on the asset group in which the run is to be created.

The keys of the hash are all strings, the values are of several different types as described
below.

Where the values have units, they must always be specified in S.I. units.

The run parameters used for ICM Exchange broadly speaking correspond to those set in
the user interface. The list below therefore includes the field’s location in the run dialog and
its sub-dialogs, and its description in the user interface if the difference is noteworthy.

Consult InfoWorks ICM's main help for more details.

The behaviour of unspecified values for run parameters is as follows: When the run is
created most of the run parameters are supplied with default values. This means that were
you to create a run, passing an empty hash in as the last parameter, and then to look at the
values for the parameters using the [] method of the run object i.e.

you would see that a number of the fields have non-nil values as follows:

 runBuilder=WSSWMMRunBuilder.new

 runBuilder.list_parameters.each do |p|

 if !runBuilder[p].nil?

 puts "#{p} = #{runBuilder[p]}"

 end

 end

network = 0

network_commit_id = 0

working = false

date_time_start_date = 2020-04-01T00:00:00+00:00

date_time_end_date = 2020-04-02T00:00:00+00:00

date_time_report_start = 2020-04-01T00:00:00+00:00

date_time_start_sweep = 2000-01-01T00:00:00+00:00

date_time_end_sweep = 2000-12-31T00:00:00+00:00

dry_days = 0.0

time_step_report = -900.0

time_step_dry = -3600.0

148

time_step_wet = -300.0

time_step_control = 0.0

time_step_route = 30.0

stdy_flow_skip_stdy_state = false

stdy_flow_sys_tol = 5.0

stdy_flow_lat_tol = 5.0

proc_parm_rain = true

proc_parm_rdii = true

proc_parm_snow = true

proc_parm_gw = true

proc_parm_route = true

proc_parm_wq = true

dyn_wave_use_var_step = true

dyn_wave_variable_step = 75.0

dyn_wave_length_step = 0.0

dyn_wave_minimum_step = 0.5

rpt_parm_det_obj_id = 0

rpt_parm_continue = true

rpt_parm_flow_stats = true

rpt_parm_input = false

rpt_parm_controls = false

inflow = 0

level = 0

time_pattern = 0

climatology = 0

surcharge_method_type = Extran

save_state_at_end = false

initial_state_sim = 0

All other fields are treated as nil by default. However, for a number of fields a nil value is
treated as a particular default value for that field as specified in the detailed notes for the
fields in question.

149

Where the name of the field below contains spaces or underscores the spaces or
underscores should be used when setting the value in the hash.

climatology

Data type: Index

Location in UI: Main page col 3

Description in UI: SWMM climatology

Notes: SWMM Climatology object used in simulation

date_time_end_date

Data type: DateTime

Location in UI: Timestep Control Sheet - Dates Page

Description in UI: End analysis

Default: Current date + 1 day at time 00:00:00

date_time_end_sweep

Data type: DateTime

Location in UI: Timestep Control Sheet - Dates Page

Description in UI: End sweeping

Default: 31 Dec

Notes: The year and time are ignored

date_time_report_start

Data type: DateTime

Location in UI: Timestep Control Sheet - Dates Page

Description in UI: Start reporting

Default: Current date at time 00:00:00

date_time_start_date

Data type: DateTime

Location in UI: Timestep Control Sheet - Dates Page

150

Description in UI: Start analysis

Default: Current date at time 00:00:00

date_time_start_sweep

Data type: DateTime

Location in UI: Timestep Control Sheet - Dates Page

Description in UI: Start sweeping

Default: 01 Jan

Notes: The year and time are ignored

dry_days

Data type: Float

Location in UI: Timestep Control Sheet - Dates Page

Description in UI: Antecedent dry days

Default: 0,0

Notes: Must be zero or a positive float value.

dyn_wave_length_step

Data type: Float

Location in UI: Main Page col 4 – Dynamic wave group box

Description in UI: Conduit lengthening timestep

Default: 0.0

dyn_wave_minimum_step

Data type: Float

Location in UI: Main Page col 4 – Dynamic wave group box

Description in UI: Minimum timestep

Default: 0.5

151

dyn_wave_use_var_step

Data type: Boolean

Location in UI: Main Page col 4 – Dynamic wave group box

Description in UI: Adjust variable timesteps by (%) - checkbox

Default: true

dyn_wave_variable_step

Data type: Float

Location in UI: Main Page col 4 – Dynamic wave group box

Description in UI: Adjust variable timesteps by (%) - edit box

Default: 75.0

Range: 10.0 – 200.0

in flow

Data type: Index

Location in UI: Main Page col 2

Description in UI: Inflow

Notes: Inflow object used in simulation

initial_state_sim

Data type: Index

Location in UI: Main Page col 1

Description in UI: Sim providing initial state

Notes: The simulation object that provides the initial state to host-start the simulation. The
simulation providing state must have saved its state and its simulation succeeded.

level

Data type: Index

Location in UI: Main Page col 2

Description in UI: Level

Notes: Level object used in simulation

152

name

Data type: String

Location in UI: Top of main Page

Description in UI: Run title

Notes: If the name is Nil then one is randomly generated

network

Data type: Index

Location in UI: Main Page col 1 – Network group box

Description in UI: SWMM network

Notes: Network object used in simulation

network_commit_id

Data type: Long Integer

Location in UI: Main Page col 1 – Network group box

Description in UI: SWMM network

Notes: Network commit ID or version number used in simulation that appears in
parenthesis following the network name

pollutographs

Data type: Array of Index

Location in UI: Main Page col 3

Description in UI: SWMM pollutograph

proc_parm_gw

Data type: Boolean

Location in UI: Options Sheet – Processes Page

Description in UI: Groundwater

Default: true

153

proc_parm_rain

Data type: Boolean

Location in UI: Options Sheet – Processes Page

Description in UI: Rainfall / runoff

Default: true

proc_parm_rdii

Data type: Boolean

Location in UI: Options Sheet – Processes Page

Description in UI: Rainfall dependent I/I

Default: true

proc_parm_route

Data type: Boolean

Location in UI: Options Sheet – Processes Page

Description in UI: Flow routing

Default: true

proc_parm_snow

Data type: Boolean

Location in UI: Options Sheet – Processes Page

Description in UI: Snowmelt

Default: true

proc_parm_wq

Data type: Boolean

Location in UI: Options Sheet – Processes Page

Description in UI: Water quality

Default: true

154

rainfall

Data type: Index

Location in UI: Main Page col 2

Description in UI: Rainfall event / Flow survey

Notes: Rainfall or flow survey object used in simulation

regulator

Data type: Index

Location in UI: Main Page col 2

Description in UI: Regulator

Notes: Regulator object used in simulation

rpt_parm_averages

Data type: Boolean

Location in UI: Main Page col 4 – Reporting group box

Description in UI: Average results

Default: false

rpt_parm_continue

Data type: Boolean

Location in UI: Main Page col 4 – Reporting group box

Description in UI: Continuity checks

Default: true

rpt_parm_controls

Data type: Boolean

Location in UI: Main Page col 4 – Reporting group box

Description in UI: Control actions

Default: false

155

rpt_parm_det_obj_id

Data type: Array of Index

Location in UI: Main Page col 4 – Reporting group box

Description in UI: Objects for detailed reporting – Selection list

rpt_parm_flow_stats

Data type: Boolean

Location in UI: Main Page col 4 – Reporting group box

Description in UI: Summary flow statistics

Default: true

rpt_parm_input

Data type: Boolean

Location in UI: Main Page col 4 – Reporting group box

Description in UI: Input summary

Default: false

save_state_at_end

Data type: Boolean

Location in UI: Main Page col 1

Description in UI: Save state at end of simulation

Default: false

scenarios

Data type: Array of String

Location in UI: Main Page col 1 – Network group box

Description in UI: Scenarios

stdy_flow_lat_tol

Data type: Float

156

Location in UI: Timestep Control Sheet - Timesteps Page – Steady flow periods group box

Description in UI: Lateral flow tolerance (%)

Default: 5.0

stdy_flow_skip_stdy_state

Data type: Boolean

Location in UI: Timestep Control Sheet - Timesteps Page – Steady flow periods group box

Description in UI: Skip steady flow periods

Default: false

stdy_flow_sys_tol

Data type: Float

Location in UI: Timestep Control Sheet - Timesteps Page – Steady flow periods group box

Description in UI: System flow tolerance (%)

Default: 5.0

surcharge_method_type

Data type: String

Location in UI: Options Sheet – Surcharge Method Page

Description in UI: Surcharge Method

Default: Extran

Notes: Must be either Extran or Slot.

time_pattern

Data type: Index

Location in UI: Main Page col 3

Description in UI: SWMM time patterns

Notes: SWMM time pattern object used for simulation.

157

time_step_control

Data type: Float

Location in UI: Timestep control sheet – Timesteps Page

Description in UI: Control rule step

Default: 0.0

Notes: Relative time in seconds. Must be a negative value.

time_step_dry

Data type: Float

Location in UI: Timestep control sheet – Timesteps Page

Description in UI: Dry weather runoff step

Default: -3600.0

Notes: Relative time in seconds. Must be a negative value.

time_step_report

Data type: Float

Location in UI: Timestep control sheet – Timesteps Page

Description in UI: Reporting timestep

Default: -900.0

Notes: Relative time in seconds that timesteps are reported. Must be a negative value.

time_step_route

Data type: Float

Location in UI: Timestep control sheet – Timesteps Page

Description in UI: Routing timestep (s)

Default: 30.0

Notes: Unlike other time_steps, this is an explicit number of seconds.

time_step_wet

Data type: Float

158

Location in UI: Timestep control sheet – Timesteps Page

Description in UI: Wet weather runoff step

Default: -300.0

Notes: Relative time in seconds. Must be a negative value.

working

Data type: Boolean

Location in UI: Main Page col 1

Description in UI: Allow re-runs using updated network

Default: false

Notes: Must be set to true before the update_to_latest method may be used.

159

Appendix 4 – WS Pro run
parameters

There are a lot of parameters, but they map onto the field names in a fairly straight-forward
fashion. Note that some of the parameters are used in types of runs which are not current
supported. Note that currently only certain run types may be set up and run – see below.

The naming scheme is as follows (with a few exceptions noted below):

aa_b_xxxx

aa is the run type

 ro Run Options (required for all runs)

 py Physical params (all runs)

 op Optimiser

 hs Hot start

pd PRD

in ‘Independent’ i.e. other

ca Calibration

wq Water Quality

ws WatSed

ff FireFlow

cl Critical Link

bs Break / Shutdown

b is the data type

l long

n integer

s string

dte date

f float

b bool

d double

160

Note that the following runs may be set up and run – the run type is set in the key
ro_l_run_type - the run types are the integers following the type names:

Normal – 0
Calibration – 1
Water Quality – 2
Watsed – 4
Critical Link –6
Break shutdown – 7

Key Note
ro_l_run_type See note above
ro_s_run_title

ro_l_geometry_id
ro_l_geometry_commit_id

ro_l_demand_diagram_id
ro_l_demand_scaling_id
ro_l_alt_demand_id

ro_l_alt_demand_commit_id
ro_l_electricity_tariff_id
ro_l_rtc_id

ro_l_control_id
ro_l_control_commit_id

ro_dte_end_date_time
ro_dte_start_date_time
ro_l_time_step

ro_l_results_selector_id
ro_n_results_selection_mode
ro_l_max_iterations

ro_f_computational_accuracy
ro_n_demand_timestep

ro_b_pressure_related_demand
ro_b_disconnected_system
ro_b_optimise

ro_b_eghgf
ro_b_experimental
ro_b_results_on_server

ro_b_store_details
ro_b_store_max

ro_b_gmr_enable

161

ro_l_gmr_config_id
ro_l_test_cases_per_thread

py_d_viscosity
py_d_density
py_d_gravity

op_l_population_size
op_d_crossover_prob
op_d_mutation_prob

op_d_profile_time_interval
op_b_start_from_existing

op_b_update_control_data
hs_l_simulation_id
hs_s_start_times

hs_s_save_times
hs_b_save_state
pd_l_profile_id

pd_s_demand_curve
pd_s_leakage_curve

In_b_validate_model
In_b_validate_run
ca_l_live_data_id

ca_l_live_data_commit_id
ca_s_friction_type
ca_f_min_friction

ca_f_max_friction
ca_dte_snapshot_time

ca_f_init_scaling_factor
wq_b_conservative_substance
wq_f_init_concentration

wq_f_min_flow
wq_l_timestep
wq_b_langrangian_solver

wq_d_age_tolerance
wq_d_conc_tolerance

wq_d_trace_tolerance
wq_d_turbidity_tolerance
wq_b_turbidity_analysis

wq_l_solute_data_id
wq_trace_node_0 String
wq_trace_node_1 String (… and upto node_29)

162

wq_b_langrangian_solver
wq_d_age_tolerance

wq_d_conc_tolerance
wq_d_trace_tolerance
wq_d_turbidity_tolerance

wq_b_turbidity_analysis
ws_s_sediment_name
ws_f_sediment_density

ws_f_sediment_diameter
ws_f_deposition_limit

ws_f_suspension_limit
ff_l_selection_id
ff_l_data_id

ff_f_hydrant_diameter
ff_f_local_loss
ff_f_fire_flow

ff_f_residual_pressure
ff_n_Enforce

ff_n_simulation_type
ff_n_data_usage
ff_dte_fire_time

ff_b_cancel_existing_flow
ff_b_zone_constraints
ff_b_system_constraints

ff_b_pressure_at_min_and_max
ff_b_calculate_max_flow

ff_b_calculate_hydrant_curve
ff_b_apply_constraints_demand_nodes
ff_b_insert_node

ff_s_existing_node_id
ff_s_split_pipe_id
ff_f_split_pipe_distance

ff_n_close_pipe_option
ff_f_max_velocity

ff_f_min_node_pressure
ff_f_min_system_pressure
ff_test_flow_0 Double

ff_test_flow_1 Double
ff_test_flow_2 Double
ff_test_flow_3 Double

163

ff_test_flow_4 Double
ff_test_flow_5 Double

ff_test_flow_6 Double
ff_test_flow_7 Double
ff_test_flow_8 Double

ff_test_flow_9 Double
cl_f_min_pressure
cl_f_duration

cl_f_max_pressure
cl_f_demand_efficiency

cl_l_ignore_count
cl_n_count_affected
cl_f_burst_rate

cl_f_outage_duration
cl_f_burst_duration
cl_n_link_outage_period

cl_dte_specified_time
cl_b_report_outage_only

cl_b_include_burst
cl_b_allow_flow
cl_b_update_criticality

cl_l_include_links_selection_id
cl_l_exclude_links_selection_id
bs_l_close_link_selection_id

bs_l_base_simulation_id
bs_f_min_pressure

bs_f_min_press_duration
bs_f_max_pressure
bs_f_max_press_duration

bs_f_max_inc_upper_threshold
bs_f_upper_threshold_duration
bs_f_max_dec_lower_threshold

bs_f_lower_threshold_duration
bs_b_whole_simulation_outage

bs_dte_shutdown_start
bs_dte_shutdown_end
ro_l_result_time_step

164

Appendix 5 –‘Add-ons’ (ICM /
InfoAsset only)
It is possible to store a CSV file containing the names of a number of scripts along with a
name of a menu item to invoke them. These appear as sub-menu items of the ‘Run add-
on’ menu item, which also appears on the ‘Network’ menu.

The CSV file must be stored in a directory below that used by the user’s application data
named ‘scripts’ and must be called ‘scripts.csv’.

The name of the directory used by the user’s application data will vary according to the
user’s set up, version of Windows etc. and can be found in the about box of the software as
‘NEP (iws) Folder’.

Having found this folder e.g.

C:\Users\badgerb\AppData\Roaming\Innovyze\WorkgroupClient

Add a sub-directory called ‘scripts’.

The folder may also be determined by using the WSApplication.add_on_folder method,
this will return the path of the scripts folder i.e.
C:\Users\badgerb\AppData\Roaming\Innovyze\WorkgroupClient\scripts in this case.

In this scripts.csv file you should add a CSV file containing 2 columns, the first being the
menu item for the script, the second the path for the script file itself.

The paths for the script files may either be fully qualified paths (i.e. beginning with a drive
letter or the name of a network share) in which case that path will be used, or a non-fully
qualified path in which case the software will assume the file is in the folder containing the
csv file or a subdirectory of it.

Changes to this file only take effect when the application is restarted

165

Appendix 6 - Open Data Import /
Export Centre UI Customisation
(ICM / InfoAsset only)
The Ruby scripting can be used to make the import / export of data via the open data
import centre more streamlined for users of the software by using Ruby scripts from the UI
in conjunction with pre-prepared configuration files and the Ruby scripting's UI elements.

At its simplest, if you can hard-code the paths of all files, then this can be done with 2 lines
of code e.g.

net=WSApplication.current_network

net.odic_import_ex('CSV','d:\temp\odic.cfg',nil,'Node','d:\temp\goat

.csv','Pipe','d:\temp\stoat.csv')

for import and

net=WSApplication.current_network

net.odec_export_ex('CSV','d:\temp\odxc.cfg',nil,'Node','d:\temp\goat

2.csv','Pipe','d:\temp\stoat2.csv')

for export.

As described above, both methods take a variable number of parameters. If you are
importing a large number of files you may find it less unwieldy to call the method multiple
times importing one file at a time e.g.

net=WSApplication.current_network

import=[['Node','goat'],['Pipe','stoat']]

import.each do |f|

 net.odic_import_ex('CSV','d:\temp\odic.cfg',nil,f[0],'d:\temp\\

'+f[1]+'.csv')

end

for import and

net=WSApplication.current_network

export=[['Node','goat'],['Pipe','stoat']]

export.each do |f|

 net.odec_export_ex('CSV','d:\temp\odxc.cfg',nil,f[0],'d:\temp\\

'+f[1]+'2.csv')

end

for export.

It should be noted that

a) You will not see any of the error messages on import that would appear in the text
box. Exceptions are not thrown for that sort of error, only for more serious errors in
the processing.

166

b) By using nil in the 3rd parameter of each method, default behaviour will be used for
the options set on the dialog, this may not be what you want.

The first of these can be solved by specifying an error text file e.g.

net=WSApplication.current_network

import=[['Node','goat'],['Pipe','stoat']]

import.each do |f|

 params=Hash.new

 params['Error File']='d:\\temp\\errs'+f[0]+'.txt'

 net.odic_import_ex('CSV','d:\temp\odic.cfg',params,f[0],'d:\tem

p\\'+f[1]+'.csv')

end

The aim here is to produce one file per table. The files will be created but of zero bytes
long if there are no errors for that table.

You will probably want to communicate the errors to the user. In its

simplest form this could be done by checking the size of the files

and displaying a message box at the end of the process e.g.

require 'FileUtils'

net=WSApplication.current_network

import=[['Node','goatwitherrs'],['Pipe','stoat']]

errFiles=Array.new

import.each do |f|

 params=Hash.new

 errFile='d:\\temp\\errs'+f[0]+'.txt'

 params['Error File']=errFile

 net.odic_import_ex('CSV','d:\temp\odic.cfg',params,f[0],'d:\tem

p\\'+f[1]+'.csv')

 if File.size(errFile)>0

 errFiles << errFile

 else

 FileUtils.rm errFile

 end

end

if errFiles.size>0

 msg="Errors occurred - please consult the following files:"

 errFiles.each do |f|

 msg+="\r\n"

 msg+=f

 end

 WSApplication.message_box msg,nil,nil,nil

end

This will display a message reporting to the user the error files which should be consulted
e.g.

167

Note the inclusion of FileUtils and the use of the FileUtils.rm method to delete files of zero
length.

If you wish to show the user the actual messages then this can be achieved either by
reading the files and outputting them to the standard output e.g.

require 'FileUtils'

net=WSApplication.current_network

import=[['Node','goatwitherrs','nodes'],['Pipe','stoat','pipes']]

errInfo=Array.new

import.each do |f|

 params=Hash.new

 errFile='d:\\temp\\errs'+f[0]+'.txt'

 if File.exists? errFile

 FileUtils.rm errFile

 end

 params['Error File']=errFile

 net.odic_import_ex('CSV','d:\temp\odic.cfg',params,f[0],'d:\tem

p\\'+f[1]+'.csv')

 if File.size(errFile)>0

 temp=Array.new

 temp << errFile

 temp << f[2]

 errInfo << temp

 else

 FileUtils.rm errFile

 end

end

if errInfo.size>0

 puts "Errors importing data:"

 errInfo.each do |ei|

 puts "Errors for #{ei[1]}:"

 outputString=''

 File.open ei[0] do |f|

 f.each_line do |l|

 l.chomp!

 outputString+=l

 outputString+="\r"

 end

168

 end

 puts outputString

 end

end

Or by using the open_text_view method, in which case the block beginning with if
ErrInfo.size>0 would be replaced with the following:

if errInfo.size>0

 consolidatedErrFileName='d:\\temp\\allerrs.txt'

 if File.exists? consolidatedErrFileName

 FileUtils.rm consolidatedErrFileName

 end

 consolidatedFile=File.open consolidatedErrFileName,'w'

 errInfo.each do |ei|

 consolidatedFile.puts "Errors for #{ei[1]}:"

 File.open ei[0] do |f|

 f.each_line do |l|

 l.chomp!

 consolidatedFile.puts l

 end

 end

 end

 consolidatedFile.close

 WSApplication.open_text_view 'Open Data Import Centre

Errors',consolidatedErrFileName,false

end

You may wish to not hard code the path of the config file but to store it with the Ruby
script. This may be done by obtaining the path of the folder containing the script then
adding the configuration file name onto the name e.g.

configfile=File.dirname(WSApplication.script_file)+'\\odicwithsource

.cfg'

This works via the following 3 steps:

Get the file name of the script file e.g. d:\temp\myscript.rb

Use the File.dirname method to obtain the folder name e.g. d:\temp

Add the configuration file name e.g. d:\temp\odicwitsource.cfg

Alternatively you may wish to allow the user to choose a config file using the
WSApplication.file_dialog method e.g. by beginning the script with

net=WSApplication.current_network

configfile=WSApplication.file_dialog(true,'cfg','Open Data Import

Centre Config File',nil,false,false)

if configfile.nil?

 WSApplication.message_box 'No config file selected - no import

will be performed',nil,nil,false

169

Else

and then using configfile in the call to odic_import_ex

Similarly you may wish to allow the user to choose the location of the data files or
database tables etc. This may be done in numerous ways depending on the data type
and/or how things are structured.

Possible mechanisms include:

1 Allowing the user to select a folder and then using hard-coded names based on that
folder.

2 Allowing the user to choose one file and then selecting similarly named files in the same
folder (e.g. if we are expecting a file with the suffix 'stoat' and we find a file called
'northwest_stoat' we will also look for files called 'northwest_goat' etc.)

3 Allowing the user to select multiple files and choosing the data type to import based on
the file names.

Here are brief examples of the 3 mechanisms:

Mechanism 1:

require 'FileUtils'

net=WSApplication.current_network

configfile=WSApplication.file_dialog(true,'cfg','Open Data Import

Centre Config File',nil,false,false)

if configfile.nil?

 WSApplication.message_box 'No config file selected - no import

will be performed',nil,nil,false

else

 folder=WSApplication.folder_dialog 'Select a folder containing

the files to import',false

 if folder.nil?

 WSApplication.message_box 'No folder selected - no import

will be performed'

 else

 import=[['Node','goatwitherrs','nodes'],['Pipe','stoat','pipes'

]]

 errInfo=Array.new

 import.each do |f|

 params=Hash.new

 errFile=folder+'\\errs'+f[0]+'.txt'

 if File.exists? errFile

 FileUtils.rm errFile

 end

 params['Error File']=errFile

170

 net.odic_import_ex('CSV',configfile,params,f[0],folder+'\\'+f[1

]+'.csv')

 if File.size(errFile)>0

 temp=Array.new

 temp << errFile

 temp << f[2]

 errInfo << temp

 else

 FileUtils.rm errFile

 end

 end

 if errInfo.size>0

 puts "Errors importing data:"

 errInfo.each do |ei|

 puts "Errors for #{ei[1]}:"

 outputString=''

 File.open ei[0] do |f|

 f.each_line do |l|

 l.chomp!

 outputString+=l

 outputString+="\r"

 end

 end

 puts outputString

 end

 end

 end

end

Mechanism 2:

require 'FileUtils'

net=WSApplication.current_network

configfile=configfile=File.dirname(WSApplication.script_file)+'\\odi

cwithsource.cfg'

import=[['Node','goat','nodes'],['Pipe','stoat','pipes']]

file=WSApplication.file_dialog(true,'csv','CSV

File',nil,false,false)

if file.nil?

 WSApplication.message_box 'No file selected - no import will be

performed','OK',nil,false

elsif file[-4..-1].downcase!='.csv'

 WSApplication.message_box 'Not a csv file - no import will be

peformed','OK',nil,false

else

 folder=File.dirname(file)

 name=File.basename(file)[0..-5]

 prefix=''

 found=false

 import.each do |i|

 if name.downcase[-i[1].length..-1]==i[1].downcase

 prefixlen=name.length-i[1].length

171

 if prefixlen>0

 prefix=name[0..prefixlen-1]

 end

 found=true

 break

 end

 end

 if !found

 WSApplication.message_box 'File name does not have an

expected suffix - no import will be performed','OK',nil,false

 else

 # errInfo is an array of arrays, with one entry added for

each imported CSV file with some sort of issue

 # it will either contain the error file name and a name

to be used for the table in error messages

 # or nil and a filename for any expected files which are

missing

 errInfo=Array.new

 import.each do |f|

 csvfilename=folder+'\\'+prefix+f[1]+'.csv'

 if !File.exists? csvfilename

 temp=Array.new

 temp << nil

 temp << csvfilename

 errInfo << temp

 else

 params=Hash.new

 errFile=folder+'\\errs'+f[0]+'.txt'

 if File.exists? errFile

 FileUtils.rm errFile

 end

 params['Error File']=errFile

 net.odic_import_ex('CSV',configfile,params,f[0],csvfilename)

 if File.size(errFile)>0

 temp=Array.new

 temp << errFile

 temp << f[2]

 errInfo << temp

 else

 FileUtils.rm errFile

 end

 end

 end

 if errInfo.size>0

 puts "Errors importing data:"

 errInfo.each do |ei|

 if ei[0].nil?

 puts "Expected file #{ei[1]} not found"

 else

 puts "Errors for #{ei[1]}:"

 outputString=''

172

 File.open ei[0] do |f|

 f.each_line do |l|

 l.chomp!

 outputString+=l

 outputString+="\r"

 end

 end

 puts outputString

 end

 end

 end

end

end

Mechanism 3:

require 'FileUtils'

net=WSApplication.current_network

configfile=configfile=File.dirname(WSApplication.script_file)+'\\odi

cwithsource.cfg'

import=[['Node','goat','nodes'],['Pipe','stoat','pipes']]

files=WSApplication.file_dialog(true,'csv','CSV

File',nil,true,false)

if files.nil? || files.length==0

 WSApplication.message_box 'No file selected - no import will be

performed','OK',nil,false

else

 nErrs=0

 errInfo=Array.new

 files.each do |file|

 folder=File.dirname(file)

 name=File.basename(file)

 if name[-4..-1].downcase=='.csv'

 name=name[0..-5]

 import.each do |i|

 if i[1].downcase==name.downcase[-

i[1].length..-1]

 params=Hash.new

 nErrs+=1

 errFile=folder+'\\errs'+nErrs.to_s+'.txt'

 if File.exists? errFile

 FileUtils.rm errFile

 end

 params['Error File']=errFile

 net.odic_import_ex('CSV',configfile,params,i[0],file)

 if File.size(errFile)>0

 temp=Array.new

 temp << errFile

 temp << i[2]

 errInfo << temp

 else

 FileUtils.rm errFile

173

 end

 break

 end

 end

 end

 end

 if errInfo.size>0

 puts "Errors importing data:"

 errInfo.each do |ei|

 if ei[0].nil?

 puts "Expected file #{ei[1]} not found"

 else

 puts "Errors for #{ei[1]}:"

 outputString=''

 File.open ei[0] do |f|

 f.each_line do |l|

 l.chomp!

 outputString+=l

 outputString+="\r"

 end

 end

 puts outputString

 end

 end

 end

end

174

Appendix 7 – Character encoding
Note that this behaviour was changed in ICM version 7.0 / InfoNet version 17.0.

The behaviour of strings passed into the ICM / InfoAsset Ruby methods or returned from
them is determined by the ‘use UTF8’ setting set by the WSApplication.use_utf8 method.
The default value is false.

If this setting is set to true, the methods will expect strings passed into methods to have
the UTF8 encoding, and will return UTF8 strings.

If this setting is set to false, the methods will expect strings passed into methods will have
the locale appropriate encoding, and will return strings in that encoding.

The strings are expected to be passed in with the correct encoding – the encoding is not
checked, and strings with a different encoding do not have their encoding changed.

If you are using constant strings in your Ruby scripts you will find things go much more
smoothly if you use the corresponding encoding in your script. As well as ensuring that the
script file is in the encoding you think it is you need to communicate this to Ruby by setting
the encoding in the first line of the script e.g

encoding: CP936

(for Simplified Chinese)

OR

encoding: UTF-8

Language Encoding Synonym
Bulgarian Windows-1251
Japanese Shift_JIS CP932
Korean CP949
Simplified Chinese GBK CP936
Turkish Windows-1254 CP857
Western European Windows-1252 CP1252

175

Appendix 8 – Interacting with Jet
databases
In the 32 bit versions of the programs only, Jet databases may be read and written to using
the DAO interface, accessed via Ruby's Win32OLE mechanism e.g. to import data

require 'WIN32OLE'

DAO=WIN32OLE.new "DAO.DBEngine.36"

WSs=DAO.Workspaces

WS=WSs[0]

db=WS.OpenDatabase 'd:\\temp\\test.mdb'

net=WSApplication.current_network

rs=db.OpenRecordset 'MANHOLES'

net.transaction_begin

if !rs.BOF && !rs.EOF

 rs.MoveFirst

 while !rs.EOF

 ro=net.new_row_object('cams_manhole')

 ro.id=rs.Fields.Item('Name').Value

 ro.x=rs.Fields.Item('x').Value

 ro.y=rs.Fields.Item('y').Value

 ro.cover_level=rs.Fields.item('cover_level').Value

 ro.write

 rs.MoveNext

 end

end

net.transaction_commit

rs.Close

db.Close

WS=nil

WSs=nil

And to export data:

require 'WIN32OLE'

DAO=WIN32OLE.new "DAO.DBEngine.36"

WSs=DAO.Workspaces

WS=WSs[0]

db=WS.OpenDatabase 'd:\\temp\\test.mdb'

tabledefs=db.TableDefs

tabledefs.each do |t|

 if t.Name=='MANHOLES'

 db.Execute 'DROP TABLE MANHOLES'

 break

 end

end

tabledefs.Refresh

db.Execute "CREATE TABLE MANHOLES (Name VARCHAR(80),x DOUBLE,y

DOUBLE,cover_level DOUBLE)"

rs=db.OpenRecordset 'MANHOLES'

net=WSApplication.current_network

176

net.row_objects('cams_manhole').each do |n|

 rs.AddNew

 rs.Fields.Item('Name').Value=n.id

 rs.Fields.Item('x').Value=n.x

 rs.Fields.Item('y').Value=n.y

 if !n.cover_level.nil?

 rs.Fields.Item('cover_level').Value=n.cover_level

 end

 rs.Update

end

db.close

WS=nil

WSs=nil

177

Appendix 9 – Short Codes
ICM and InfoAsset combined database

Name ShortCode

Action List ACTL
Alert Definition List ADL
Alert Instance List AIL
Asset Group AG
Asset Network ASSETNET
Asset Network Template ASSETTMP
Asset Validation ASSETVAL
Assimilation ASSIM
Calibration PDMC
Collection Cost Estimator COST
Collection Inference CINF
Collection Network CNN
Collection Network Template CNTMP
Collection Validation VAL
Custom Graph CGDT
Custom Report CR
Damage Calculation Results DMGCALC
Damage Function DMGFUNC
Dashboard DASH
Distribution Cost Estimator WCOST
Distribution Inference WINF
Distribution Network NWNET
Distribution Network Template WNTMP
Distribution Validation WVAL
Episode Collection EPC
Flow Survey FS
Geo Explorer NGX
Graph GDT
Gridded Ground Model GGM
Ground Infiltration IFN
Ground Model GM
Infinity Configuration INFINITY
Inflow INF
Initial Conditions 1D IC1D
Initial Conditions 2D IC2D
Initial Conditions Catchment ICCA
Label List LAB

178

Name ShortCode

Layer List LL
Level LEV
Lifetime Estimator LIFEE
Live Group LG
Manifest MAN
Manifest Deployment MAND
Master Group MASG
Model Group MODG
Model Inference INFR
Model Network NNET
Model Network Template NNT
Model Validation ENV
Observed Depth Event OBD
Observed Flow Event OBF
Observed Velocity Event OBV
Pipe Sediment Data PSD
Point Selection PTSEL
Pollutant Graph PGR
Print Layout PTL
Rainfall Event RAIN
Regulator REG
Rehabilitation Planner REHABP
Risk Analysis Run RAR
Risk Assessment RISK
Risk Calculation Results RISKCALC
Run RUN
Selection List SEL
Sim SIM
Sim Stats STAT
Statistics Template ST
Stored Query SQL
Theme THM
Time Varying Data TVD
Trade Waste TW
TSDB TSDB
TSDB Spatial TSDBS
UPM River Data UPMRD
UPM Threshold UPTHR
Waste Water WW
Workspace WKSP

179

WS Pro database
Name ShortCode

Alt_Demand ALTDMD
Baseline BLINE
Baseline Explorer BLINEEX
Catchment Group CG
Control CON
Custom Report CR
Custom Report Group CRG
Demand Diagram DDG
Demand Diagram Group DDGG
Demand Scaling DSCL
Demand Scaling Group DSCLG
Electricity Tariff ETAR
Electricity Tariff Group ETARG
Energy GHG Factors EGHGF
Energy GHG Factors Group EGHGFG
Engineering Validation ENV
Engineering Validation Group ENVG
Export Style ES
Export Style Group ESG
FireFlowData FF
FireFlowData Group FFG
Flushing Schedule FSCH
Flushing Schedule Group FSCHG
Gen Multi Run Cfg GMRC
Gen Multi Run Cfg Group GMRCG
Geo Explorer GEOEX
Geometry GMT
Geometry Template GMTTMPL
Graph GDT
Graph Group GDTG
Gridded Ground Model GGM
Gridded Ground Model Group GGMG
Ground Model GM
Ground Model Group GMG
Inference INF
Inference Group INFG
IWL Switch Controller IWLSC
IWL Switch Controller Group IWLSCG
IWLive RunInfo IWLRI

180

Name ShortCode
IWLive RunInfo Group IWLRIG
Label List LAB
Label List Group LABG
Layer List LL
Layer List Group LLG
Model 360 Cfg M360C
Model 360 Cfg Group M360CG
Polygon POL
Polygon Group POLG
Report Cfg RC
Report Cfg Group RCG
ResultsSelector RESSEL
ResultsSelector Group RESSELG
RTC Group RTCG
RTC Scenario RTC
Selection List SEL
Selection List Group SELG
SoluteData SD
SoluteData Group SDG
Stored Query SQL
Stored Query Group SQLQ
Theme THM
Theme Group THMG
Warning Template WT
Warning Template Group WTG
Wesnet Live Data WNLIVE
Wesnet Run WNRUN
Wesnet Run Group WNRUNG
Wesnet Sim WNSIM
Workspace WKSP
Workspace Group WKSPG
Zone Explorer ZONEEX

